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Abstract 

Although proof comprehension is fundamental in advanced undergraduate mathematics 

courses, there has been limited research on what it means to understand a mathematical 

proof at this level and how such understanding can be assessed. In this paper, we address 

these issues by presenting a multi-dimensional model for assessing proof comprehension 

in undergraduate mathematics. Building on Yang and Lin’s (2008) model of reading 

comprehension of proofs in school geometry, we contend that in undergraduate 

mathematics a proof is not only understood in terms of the meaning, logical status, and 

logical chaining of its statements, but also in terms of the proof’s high-level ideas, its 

main components or modules, the methods it employs, and how it relates to specific 

examples. We illustrate how each of these types of understanding can be assessed in the 

context of a proof in number theory. 
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An assessment model for proof comprehension in undergraduate mathematics 

1. Introduction 

 In advanced mathematics courses, students spend a substantial amount of time 

reading proofs. They read proofs in their mathematics textbooks and their professors’ 

lecture notes and they read and listen to the proofs their professors present in class. 

Presumably a central reason that students are expected to read and study proofs is that 

they can come to understand the proofs and learn from them. However, the extent to 

which this pedagogical goal is realized is largely unknown and we contend that this is 

due, in part, to the lack of assessment instruments on proof comprehension. 

It is widely accepted that the purpose of proof, both in the mathematics 

community and mathematics classrooms, is not merely to convince students that an 

assertion is true, but also to provide students with some form of mathematical insight 

(e.g., Hanna, 1990; Hersh, 1993; Thurston, 1994). However, exactly what this insight is, 

what it means for a proof to be understood, and how we can tell if students comprehend a 

given proof remain open questions in mathematics education. In a systematic study of the 

literature, Mejia-Ramos and Inglis (2009) found that in a sample of 131 articles related to 

the notions of proof and argumentation in mathematics, only three articles focused on 

students’ comprehension of given proofs. This finding is consistent with calls from other 

researchers (e.g., Mamona-Downs & Downs, 2005; Selden & Selden, 2003) who have 

suggested that more research on proof reading is needed. Furthermore, Conradie and 

Frith (2000), Rowland (2001), Schoenfeld (1988), and Weber (in press) have argued that 

students’ comprehension of a given proof is often measured by asking them to reproduce 

it or modify it slightly to prove an analogous theorem, even though these types of 

assessments offer only a superficial view of students’ comprehension. These findings 

suggest that more sophisticated ways of assessing students’ comprehension of a proof are 
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needed. The objective of this paper is to present a model for assessing proof 

comprehension in advanced mathematics. 

We argue that our assessment model for proof comprehension in advanced 

mathematics is particularly useful for researchers in undergraduate mathematics 

education, but could also be helpful for professors who teach advanced mathematics 

courses. 

For researchers in mathematics education, a means to assess students’ 

comprehension of proofs could be important for evaluating the effectiveness of 

mathematics instruction. For instance, researchers often cite structured and generic proofs 

(e.g., Leron, 1983; Rowland, 2001) as having the potential to improve how well students 

understand particular proofs (as well as their understanding of the enterprise of proof in 

general), but these broad claims have not been empirically tested. Our assessment model 

could be used to study a related, more specific question: how and to what extent do these 

novel ways of presenting proofs improve proof comprehension?  More generally, our 

model could be used to examine how proof comprehension develops in students and to 

evaluate different means of improving it. 

Employing assessment instruments based on this model could also inform 

teachers what specific aspects of a given proof students understand and what aspects they 

do not understand. As Conradie and Frith (2000) argued, appropriate comprehension tests 

can provide teachers with more insight into how effective their lectures were, and 

possibly how to improve them. Teachers of advanced mathematics might also employ 

this model to design assessment instruments that convey to students the type of 

understanding they are expected to develop. As Resnick and Resnick (1992) argued, it is 



An assessment model for proof comprehension in undergraduate mathematics 

usually unrealistic to expect students to learn a piece of mathematics if their 

understanding of this mathematics is not assessed. If comprehension tests only ask 

students to reproduce a proof by rote, students are likely to develop a superficial 

understanding of that proof and emphasize form over substance (as is illustrated by 

Schoenfeld, 1988). A useful assessment instrument could highlight to students what they 

are supposed to understand and direct their attention to appropriate aspects of the proof. 

2. Related literature 

 In the last two decades, there has been a tremendous increase in research on proof. 

However, the substantial majority of the empirical studies on proof have focused on 

students’ construction of proofs (Mejia-Ramos & Inglis, 2009). Further, the studies that 

have focused on the reading of proof have usually examined the ways in which students 

make judgments on mathematical arguments—such as whether a particular argument is 

convincing or would qualify as a proof—often with the aim of providing insights into 

students’ perceptions of proof. Mejia-Ramos and Inglis (2009) note that there are few 

empirical studies on how well students are able to understand proofs. 

Our assessment model is based on two pioneering articles in this area—the work 

of Yang and Lin (2008) and that of Conradie and Frith (2000). Yang and Lin (2008) 

made an important first step toward understanding proof comprehension by introducing 

what they called a model of reading comprehension of geometry proof (RCGP). Yang and 

Lin’s model consists of four levels and five facets of proof comprehension. 

At the first level, termed surface, students acquire basic knowledge regarding the 

meaning of statements and symbols in the proof. At the second level, which Yang and 

Lin called recognizing the elements, students identify the logical status of the statements 
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that are used either explicitly or implicitly in the proof. At the third level, termed 

chaining the elements, students comprehend the way in which these different statements 

are connected in the proof by identifying the logical relations between them. Finally, at 

the fourth level, which Yang and Lin referred to as encapsulation, students interiorize the 

proof as a whole by reflecting on how one may apply the proof to other contexts. 

Yang and Lin (2008) focused predominantly on the first three levels of their 

model (which seem to be crucial in the comprehension of high-school geometry), while 

leaving the fourth level noticeably unspecified. In particular, Yang and Lin indicated that 

their instrument for measuring students’ proof comprehension was not aimed at 

diagnosing if a student had reached this top level (p.71). 

The assessment model we propose seeks to adapt Yang and Lin’s RCGP model to 

contexts in advanced mathematics. Critically, this involves expanding upon their 

encapsulation level of understanding (which we believe is of crucial importance in the 

comprehension of proofs in advanced mathematics courses) and restructuring their facets 

to make them more relevant to proof comprehension in undergraduate mathematics. 

Conradie and Frith (2000) raised the issue of comprehension tests in advanced 

mathematics. In addition to stressing their importance, these researchers provided 

illustrations of comprehension tests for two different proofs. In this paper, we aim to go 

further by providing a more systematic way of generating this type of tests.  

3. Method for generating the assessment model 

 In this paper, we propose seven types of questions one could employ to assess 

students’ understanding of a proof in advanced mathematics. We believe each of these 

types measures a different facet of proof comprehension—for instance, we can imagine a 
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student (or mathematician) who grasps the big picture of a proof without understanding 

the technical details of the proof, and vice versa. Thus we do not view these different 

types of assessment as part of a hierarchy, but rather as measuring students’ proof 

comprehension along different dimensions. 

 The components of our model can be separated into two groups. The first group 

focuses on assessing one’s understanding of local aspects of the proof. By this we mean 

understanding that can be discerned either by studying a specific statement in the proof or 

how that statement relates to a small number of other statements within the proof. 

Critically, questions assessing the comprehension of local aspects of the proof could be 

answered by ignoring most of the statements in the proof. Our work in generating this 

part of our assessment model consists of adapting the first three levels and facets of Yang 

and Lin’s (2008) model of reading comprehension of geometry proofs to the more 

complex proofs that undergraduates encounter in their advanced mathematics courses. 

 The second group focuses on assessing one’s holistic understanding of the proof, 

which cannot be gleaned by examining a small number of statements in the proof, but 

rather must be ascertained by inferring the ideas or methods that motivate a major part of 

the proof, or the proof in its entirety. This second group is an elaboration of Yang and 

Lin’s (2008) notion of encapsulation, and it was generated by studying the types of 

understanding valued by the mathematics education research community and 

mathematicians who teach advanced mathematics courses. We took the following steps to 

generate this second group of components of our assessment model.  

First, we reviewed the mathematics education research literature on the purposes 

of proof (e.g., de Villiers, 1990; Hanna, 1990; Hersh, 1993; Weber, 2002; Hanna & 
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Barbeau, 2008). We reasoned that one way we can evaluate whether a student understood 

a proof is by measuring the extent to which the proof achieves these purposes for that 

particular student. To illustrate, some mathematics educators (e.g. Hanna & Barbeau, 

2008) have argued that a primary purpose of proof is to illustrate new methods for 

proving and problem solving. Hence, we deduced that one way to assess whether a 

student understood a given proof is by evaluating the extent to which that student could 

apply the proof’s method in other situations. 

Second, we reviewed the recommendations for alternative methods of presenting 

proofs (e.g., Leron, 1983; Hersh, 1993; Rowland, 2001; Alcock, 2009). The authors who 

proposed these formats all contended that these formats had the potential to improve 

students’ understanding of a proof, although none defined what understanding a proof 

actually entailed. We inferred what specific understandings the authors felt that students 

might gain from these alternative presentations. For instance, Leron’s (1983) structured 

proofs were organized in terms of the proof’s components to help students see how these 

components supported the main idea of the proof. Accordingly, we inferred that being 

able to both summarize a proof and identify the relationship between the components of 

the proof constitute two dimensions of understanding it.  

Finally, we investigated what types of proof comprehension were valued by the 

mathematicians who teach advanced mathematics courses. To investigate this, we 

conducted semi-structured interviews with nine such mathematicians about why they read 

proofs, what they thought it meant to understand a proof, and their goals for presenting 

proofs to their students. The methodology and results of this study are discussed in detail 

by Weber and Mejia-Ramos (2011) and Weber (2010). 
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If a particular facet of understanding was mentioned by at least two 

mathematicians and was discussed in the mathematics education literature, we 

incorporated it into our model of assessing the comprehension of holistic aspects of the 

proof. We found four such facets: summarizing the main idea of the proof, understanding 

the proof in terms of its components or modules, applying the method of the proof in 

other contexts, and illustrating the proof with examples or diagrams.1 

4. A model for assessing proof comprehension 

 In this section, we describe ways to assess students’ understanding of seven 

different aspects of a proof in advanced mathematics. For each type of question, we first 

describe the type of understanding it is designed to evaluate. Next, we describe how this 

type of assessment is an adaptation of a component in Yang and Lin’s (2008) proof 

comprehension model, or how it was discussed by the interviewed mathematicians and in 

the mathematics education literature. After this, we present templates for how these types 

of assessments can be generated. Finally, we give specific examples of questions that can 

evaluate one’s understanding of the following proof: 

 
We say that a number is monadic if it can be represented as4 1j + , and triadic if it can be 
represented as 4 3k + , for some integers j and k. 
Theorem.  There exist infinitely many triadic primes. 

1. Consider a product of two monadic numbers: 
(4 1)(4 1) 4 4 4 4 1 4(4 ) 1,j k j k j k jk j k+ + = + + + = + + +i  
which is again monadic. 

2. Similarly, the product of any number of monadic numbers is monadic. 
3. Now, assume the theorem is false, so there are only finitely many triadic primes, 

say 1 2, ,..., np p p . 

                                                
1 We note that there were two related types of proof comprehension mentioned by 
mathematicians that were not discussed in the mathematics education research 
literature—recognizing where a proof becomes non-routine or difficult, and recognizing 
why the obvious approach to proving a particular theorem fails. 
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4. Let 24 3nM p p= +! , where 1 3p = . 
5. 2 3, ..., np p p  do not divide M as they leave a remainder of 3, and 3 does not divide 

M as it does not divide 24 np p! . 
6. We conclude that no triadic prime divides M. 
7. Also, 2 does not divide M since M is odd. 
8. Thus all of M’s prime factors are monadic, hence M itself must be monadic. 
9. But M is clearly triadic, a contradiction. 

 

Before reading the following section, we suggest that the reader consider how one could 

assess students’ understanding of this proof at the undergraduate level. 

4. 1. Assessing the local comprehension of a proof 

The first three levels of Yang and Lin’s (2008) model address proof comprehension at the 

level of specific terms and statements (what they mean, what their logical status is, and 

how they connect to preceding and succeeding statements), as opposed to the fourth 

level, which addresses the comprehension of the proof as a whole (its generality and 

application to other contexts). In this sense, the first three levels of Yang and Lin’s model 

address students’ understanding of local aspects of the proof. In this section we focus on 

types of question to assess this type of understanding; i.e. questions that address only one, 

or a small number, of statements within the proof.  

4. 1. 1 Meaning of terms and statements 

One of the most fundamental ways to understand any type of text is to understand 

the meaning of individual words and sentences. In the case of proof, one can assess a 

reader’s comprehension of this aspect by asking him or her to identify the definition of a 

key term in the proof, or to specify what is meant by some of its statements. Yang and 

Lin (2008) featured this aspect of proof prominently at their surface level of proof 

comprehension. Research suggests that students often fail to understand the meaning of 

key terms when reading a proof (Conradie & Frith, 2000), hindering their ability to 
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comprehend other aspects of the proof, and that less successful students sometimes do not 

try to understand the meaning of key terms and statements (Weber, Brophy, & Lin, 

2008). 

Assessing the extent to which readers understand the meaning of specific terms 

appearing in the proof may involve asking them to: 

1. State the definition of a given term in the proof (e.g., “define the given term in 

your own words”, “which of the following statements defines the given term?”). 

For instance, in the proof above, one could ask, “what does it mean for a number 

to be triadic?”2 or “what does it mean for a number to be prime?” 

2. Identify examples that illustrate a given term in the proof (e.g., “give a specific 

example that illustrates the given term”, “which of the following cases 

exemplifies the given term?”).  For instance, for the proof above, one could 

provide a list of natural numbers and ask, “which of the following are triadic 

primes?” 

Further, in order to assess a reader’s comprehension of individual statements in the proof 

(including the proven statement) one may ask them to: 

1. State a given statement in a different but equivalent manner (e.g., “write the given 

statement in your own words”, “which of the following statements are equivalent 

to the proven theorem?”). 

2. Identify trivial implications of a given statement (e.g., “which of the following 

statements are true based on the given statement?”, “which of the following are 

immediate consequences of the given statement?”).  

                                                
2 The proof used in this paper introduces new terminology such as “triadic”, but as the 
following question illustrates, one need not only ask about new terminology. 
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3. Identify examples that illustrate a given statement (e.g., “which of the following 

cases verify the statement for a particular example?”, “which of the following 

cases does the given statement rule out?”). In our example, one could ask: 

“according to the statements in lines 1-2, is it definitely true, possible, or 

impossible that 520 is a monadic number?” 

A reader could conceivably answer these types of questions without ever having read the 

proof itself (although reading the proof may help a learner develop a better understanding 

of key terms and statements). However, this is not always the case, as some proofs 

introduce new terminology.3 We also note that, even though these questions may be 

simple to pose—because they pertain only to a single statement within the proof—they 

nonetheless can be designed to be quite challenging. 

4. 1. 2. Logical status of statements and proof framework 

 Yang and Lin (2008) note that in high school geometry proofs, the assertions 

within the proof can have different statuses, such as being an axiom or postulate, an 

established fact or theorem, a hypothesis of the theorem to be proven, or a statement 

deduced from previous assertions. Understanding the status of the different assertions in 

the proof is necessary to understanding the logic of the proof. We agree with this analysis 

and argue that the situation is more complex in advanced mathematics. 

In the majority of high school geometry proofs, the conclusion of the proven 

theorem is directly derived after assuming its hypotheses are true. That is, high school 

geometry proofs of a conditional statement “if p, then q” generally assume all conditions 

                                                
3 In this sense, this aspect of proof comprehension sometimes differs from the “surface 
level” described by Yang and Lin. This difference is due, in part, to the content of proofs 
in high school geometry and advanced mathematics. It is uncommon to create new 
terminology for a specific proof in high school geometry. 
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stated in p and deduce that q is also the case. In advanced mathematics, some proofs 

assume the negation of q and deduce the negation of p (proof by contraposition), other 

proofs make additional assumptions to those mentioned in the proven statement (e.g. 

proof by cases, proofs by induction), and yet others assume the negation of the proven 

statement and deduce a contradiction (proof by contradiction).  

Thus, in the context of advanced mathematics a reader needs to not only identify 

the logical status of statements in proofs, but also recognize the logical relationship 

between the statement being proven and the assumptions and conclusions of the proof. 

Recognizing this relationship involves understanding what Selden and Selden (1995) 

called the proof framework: “the ‘top-level’ structure of the proof, which does not depend 

on detailed knowledge of the relevant concepts”. For instance, the proof framework of a 

proof by contraposition of the claim, “If n2 is odd, then n is odd” would take the claim “n 

is even” as an assumption and “n2 is even” as the conclusion. A reader who understands 

this proof framework would not only identify the logical status of these two statements in 

the proof (“n is even” is an assumption and “n2 is even” is a conclusion), but also 

recognize the logical equivalence between the original conditional statement and its 

contrapositive. Notice that in this case, the reader recognizes the proof framework by 

studying the logical status of only two statements in the proof (initial hypothesis and 

conclusion), potentially ignoring most of its other statements. In this sense, even though 

the proof framework refers to the “top-level” structure of the proof, it could be 

understood by studying a local aspect of the proof. 

In general, assessing a reader’s comprehension of the proof framework and the 

logical status of statements in the proof may involve asking him or her to: 
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1. Identify the purpose of a sentence within a proof framework (e.g., “In the proof, 

what is the purpose of making this particular assumption?”, “what is the purpose 

of considering these particular cases”?). In our example, one could ask: “In line 3, 

what is the purpose of assuming that the theorem is false and there are only 

finitely many triadic primes?” 

2. Identify the type of proof framework. This type of question could simply ask 

students to name the kind of proof being employed. For example, “is the proof a 

proof by contradiction, a proof by contraposition, or a proof by cases?” 

As Selden and Selden (2003) illustrated, and Weber (2009) replicated, students often fail 

to consider the proof framework of a proof they are reading, leading students to be unsure 

of what is being proven and unable to determine if a proof is correct. 

4. 1. 3. Justification of claims 

In a proof, new statements are deduced from previous ones by the application of 

accepted mathematical principles (e.g., theorems, logical rules, algebraic manipulations). 

However, as with all scientific texts, a proof would be impossibly long if all of its logical 

details were explicitly stated (Davis & Hersh, 1981). In many cases, the reader needs to 

infer what previous statements and mathematical principles are used to deduce a new 

assertion within a proof. Research has illustrated that undergraduates sometimes fail to do 

this when reading a proof (e.g., Alcock & Weber, 2005; Weber & Alcock, 2005). Thus, 

one dimension of proof comprehension involves being able to provide justifications for 

how new assertions follow from previous ones. This dimension is essentially Yang and 

Lin’s (2008) chaining level of proof comprehension.  
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 In general, in order to assess the extent to which readers comprehend the 

justification of claims in the proof, one may ask them to: 

1. Make explicit an implicit warrant in the proof. Generally, proofs include 

expressions of the form “Since A, then B”, where the claim B is justified simply 

by citing statement A. In this type of expression, the general rule according to 

which statement A is sufficient to conclude statement B is left implicit. In some 

cases (e.g., proofs appearing in specialized publications) this may be done under 

the assumption that this general rule is obvious to the reader, and therefore it 

would be superfluous to mention it. In other cases (e.g., proofs appearing in 

undergraduate mathematics textbooks) this may be done with the expectation that 

readers work out for themselves what these general rules are. Demonstrating an 

understanding of such justifications would involve making the rules explicit (e.g., 

“what general rule justifies that [claim of the form ‘Since A, then B’] in the 

proof?”). In our particular proof, one could ask, “In line 5, why does the fact that 

3 does not divide 24 np p!  imply that 3 does not divide M?” 

2. Identify the specific data supporting a given claim. It is also common for proofs to 

include expressions of the form “Hence, C”, in which the claim C is justified by 

some unspecified subset of all the previous statements in the proof.  Often, these 

claims are justified by statements immediately preceding them in the proof, but 

they may also be justified by statements from different parts of the proof (as well 

as other implicit warrants). Assessing the extent to which a reader understands 

how a claim presented in this manner is justified may involve asking him or her to 

identify the specific statements within the proof that provide the basis for a claim 
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(e.g., “which of the following statements in the proof allow the conclusion [claim 

of the form ‘Hence, C’]?”). In the proof above, one may ask, “What statement can 

be used to justify the claim in line 9, that M is clearly triadic?” 

3. Identify the specific claims that are supported by a given statement. Proofs often 

reach specific results or state specific assumptions without explicitly specifying 

how these results or assumptions are later used in the proof. Therefore, another 

way of assessing this dimension of proof comprehension involves asking a reader 

to identify the exact place(s) in the proof where a given piece of information is 

employed as justification of new claims (e.g., “which of the following claims in 

the proof logically depend on the assertion [specific proposition in the proof]?”). 

For instance, for the proof above, one could ask, “which claims in the proof 

logically depend on line 2 of the proof, the claim that the product of monadic 

numbers is monadic?”  

4. 2. Assessing the holistic comprehension of a proof 

The fourth level in Yang and Lin’s (2008) RCGP model, termed encapsulation, deals 

with students’ interiorization of the proof as a whole. This level addresses a more holistic 

comprehension of the proof, in which the proof as a whole is understood in terms of its 

main ideas, methods, and application to other contexts. In this section we develop four 

different ways of assessing this type of comprehension in undergraduate mathematics.  

4. 2. 1. Summarizing via high-level ideas 

A common complaint about the linear way in which proofs are conventionally 

written is that it masks the higher-level ideas contained in the proof: in studying the 

specific logical details of the proof, one can lose track of the big picture (e.g., Leron, 
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1983; Anderson, Boyle, & Yost, 1986; Alibert & Thomas, 1991). One way that a proof 

can be understood is in terms of the overarching approach that is used within a proof. 

Several mathematicians that we interviewed indicated that this is one way that proof 

could be read or understood and, further, that this is different than checking the logical 

details of a proof. 

 

M2:  There’s two ways you want people to read proofs. First way is to scan it 

for the main idea […] And the second way to read it is to understand the 

logic of it, which is a different kind of reading.  

 

M5:  When I read the theorem, I think, is this theorem likely to be true and what 

does the author need to show to prove it’s true. And then I find the big 

idea of the proof and see if it will work. If the big idea works, if the key 

idea makes sense, probably the rest of the details of the proof are going to 

work too. 

 

M8:  There are different levels of understanding. One level of understanding is 

knowing the logic, knowing why the proof is true. A different level of 

understanding is seeing the big idea in the proof. When I read a proof, I 

sometimes think, how is the author really trying to go about this, what 

specific things is he trying to do, and how does he go about doing them. 

Understanding that, I think, is different than understanding how each sort 

of logical piece fits together. 

 

In these excerpts, the mathematicians valued understanding the proof in terms of 

the main idea being applied. Seeing the big idea of the proof, as opposed to seeing the 

proof solely as a chain of specific logical assertions, is a large part of the motivation 

behind Leron’s (1983) structured proofs. These proofs are presented in a hierarchical 
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fashion, where “the top level gives in very general (but precise) terms the main line of the 

proof” (p. 174), allowing the proof to “be grasped at a glance, yielding an overview of the 

proof” (p. 175). These proofs have the goal that “the ideas behind the formal proof are 

better communicated” (p. 183). Leron also advocates a good learning activity and a test 

of students’ understanding is to take a ten-page proof and describe it in one page (p. 184). 

Since Leron proposed his notion of structured proofs, mathematics educators have 

commonly cited this as a way to improve students’ proof comprehension, implying that 

having a top-level overview, or understanding the “big idea” of the proof, is an important 

part of proof comprehension. 

 In general, assessing readers’ comprehension of a proof’s high-level ideas may 

involve asking them to: 

1. Identify or provide a good summary of the proof. In this case, a reader is asked to 

provide a summary of the proof. Because objectively grading the quality of a 

proof summary might be difficult, a teacher may instead provide several 

summaries of the proof and ask the student to choose which summary captures the 

main idea of the proof.  For our example proof, one could ask students to select 

the better of the following two summaries, where the first summary captures the 

main idea of the proof and the second includes too much detail for some ideas and 

leaves others out: 

o It assumes there are finitely many triadic primes and uses them to 

construct a triadic number M that has only monadic prime factors, which 

would imply M is also monadic. This is a contradiction. 
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o It lets M = 4p2!pn +3 , where pi  are prime numbers and pi ! 3 . Thus, 2 

does not divide M because M is odd. Further pi  does not divide M because 

it leaves a remainder of 3. This produces a contradiction. 

o I don’t know which summary would be better. 

2. Identify a good summary of a key sub-proof in the proof. In this type of 

assessment, the reader is asked to provide or identify a summary of a key sub-

proof of the proof (e.g., “which of the following best summarizes why [significant 

result within the proof]?”).  

4. 2. 2. Identifying the modular structure 

 Several mathematicians indicated that understanding a proof entailed breaking the 

proof into components or modules and then specifying the logical relationship between 

each of the modules, as the following quotes illustrate: 

 

M9:  [Understanding a proof involves] understanding how the proof is 

structured. A good proof often has a number of interesting lemmas and 

corollaries and sub-theorems and the like. Longer proofs can get pretty 

complicated. One of the things I try to do when I read a proof is to see 

how all these things, these lemmas and such, fit together. 

 

M6:  Another tool [for understanding proofs] is properly encapsulating the 

pieces of the proof … I have one particular example that I spent a lot of 

time on this, where there was this very technical lemma in a paper and the 

lemma had a bunch of hypotheses. And, you know, what I was trying to 

do was just strip away the superfluous detail… really this lemma held in a 

much more general context where there were many fewer hypotheses, and 

then you get something which it just reduced the technical mess of the 
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proof a lot because, you know, he’s carrying along all these hypotheses 

which were really unnecessary. 

 

Breaking a proof into manageable modules was one of the motivations behind Leron’s 

(1983) structured proofs, as his method allows the reader to clearly see how the proof can 

be partitioned and what the purpose of each module is. In a sense, proofs that contain 

lemmas can also be thought of as partially structured proofs, as the lemma can be thought 

of as a separate entity from the proof, which can be used both within the proof and 

elsewhere. The following are two ways of assessing students’ understanding of the 

relationships between different modules in a proof: 

1. Ask students to partition a proof into modules. One could assess this dimension of 

proof comprehension by asking a reader to partition a proof into modules. Leron 

(1983) explicitly suggested that asking students themselves to structure a proof 

would help them understand it. 

2. Identify the purpose of a module of a proof. In this case, one could ask a student 

to identify the role of a given part of the proof within its general framework. 

These parts could be a lemma, a specific case in a proof by cases, or any type of 

subproof within the original proof (e.g., in a proof by cases one could ask: “which 

of the following statements best justifies the consideration of [specific case] in the 

proof?”). In the proof above, one could ask, “why was the sub-proof that the 

product of monadic numbers is monadic included in the proof?” 

3. Identify the logical relation between modules of a proof. One could also assess 

this dimension of proof comprehension by asking a reader to identify the logical 

relation between two or more modules of a proof (e.g., “which of the following 
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best describes the logical relation between [two or more parts of the proof 

framework]”?). In the proof above, one question that addresses this point might 

be, “What is the logical relation between lines 1-2 in the proof, which establish 

that the product of monadic primes is monadic, and lines 3-7, which establish that 

M is not divisible by a triadic prime?” (In this case, the two modules are logically 

independent of one another). 

4. 2. 3. Transferring the general ideas or methods to another context 

An important aspect of comprehending a proof involves identifying the 

procedures used in the proof and the ways in which these procedures can be applied (or 

re-interpreted) to solve other proving tasks. Every mathematician that we interviewed 

mentioned this as a primary reason for reading the proofs of others, as the following 

representative excerpts illustrate: 

 

M1:  You read the proof carefully and you discover these are things that you 

can use. That’s certainly from a pragmatic point of view, that’s an 

important part of reading proofs, that you steal good ideas out of good 

proofs. 

 

M6:  Well, I would say most often is to get some ideas that might be useful to 

me for proving things myself. […] usually I’m reading something because 

it seems to have some connection to some problems that I was interested 

in. I’m hoping that if that the tools they’re using or ideas they’re using 

might connect up to some of these problems that I have thought about. 

 

M4:  [When reading a proof,] I want to understand the proof technique in case I 

can use bits and pieces of that proof technique to prove something that 

they haven’t yet. 
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Several of the interviewed mathematicians also mentioned that they hoped 

students would be able to apply the ideas of the proofs that they presented in class to 

other contexts as well. In the mathematics education literature, Weber (2002) noted that 

the reason for presenting proofs of seemingly obvious statements (such as “f(x)=x2 is a 

continuous function” in real analysis) is to illustrate for students how the method in the 

proof can be used to prove a class of theorems. Building on the philosophical work of 

Rav (1999), Hanna and Barbeau (2008) argued that illustrating methods is an important 

role of proof in the mathematics classroom. In our example, the method4 of proof 

involves using a (presumed) finite list of primes to construct a number with contradictory 

properties (in this case, being both monadic and triadic). 

In general, there are at least three ways in which this dimension can be assessed: 

1. Transfer the method. This involves being able to successfully apply the method in 

the solution of a different task (e.g., “Using the method in the previous proof, 

prove [similar theorem]”). In our specific example, one might ask, “Using the 

method of the proof above, prove that there are infinitely many primes of the form 

6k+5”. 

2. Identify the method. This involves being able to identify the general manner in 

which the method of the original proof can be applied in a different proving task 

(e.g., given a theorem T that can be proven using the method displayed in the 

original proof, ask “which of the following general procedures would you follow 

                                                
4 What counts as a method of proof is a subtle issue that is beyond the scope of this paper. 
A proof might have several methods. However, we anticipate that many proofs for which 
one would test students’ comprehension have a fairly well-delineated method. 
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to prove T?”, or “how would you start proving T?”). In the example above, rather 

than asking a student to write a complete proof of the theorem that there are 

infinitely many primes of the form 6k+5, one could simply ask what would be an 

appropriate value of M if one were to use such an approach.5 One benefit of this 

type of question over a strict transfer one is that students’ performance on this 

item would be less time-consuming and would be less dependent on students’ 

domain knowledge (i.e., one could understand the general method needed to 

prove a theorem but lack the logical or algebraic proficiency to complete the 

proof). 

3. Appreciate the scope of the method. This involves recognizing the assumptions 

that need to be in place to allow the method to be carried out (e.g., “explain why 

the method used in proof P of theorem T would not be useful for proving 

statement S?”). In the example above, one could ask, “Why can’t the ideas used in 

this proof be used to prove there are infinitely many monadic primes?” (a product 

of triadic numbers need not be triadic).  

4. 2. 4. Illustrating with examples 

Comprehending a proof often involves understanding how the proof relates to and could 

be illustrated by specific examples—that is, being able to follow a sequence of inferences 

in the proof in terms of a specific example. Many of the mathematicians that we 

interviewed emphasized that this was an indispensable tool that they used to gain an 

understanding of a proof that they were reading, as the following excerpts illustrate: 

                                                
5  To avoid students answering this question by matching symbols rather than using a 
deep understanding, one could also ask the student to justify why this choice of M was 
appropriate, or to present them with a poor choice of M and ask why the proof would not 
work in that case. 
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M4:  Commonly, if I’m really befuddled and if it’s appropriate, I will keep a 

two-column set of notes: one in which I’m trying to understand the proof, 

and the other in which I’m trying to apply that technique to proving a 

special case of the general theorem. 

 

M5: [When asked if he used examples to understand proofs] Always. Always. 

Like I said, I never just read a proof at an abstract level. I always use 

examples to make sure the theorem makes sense and the proof works. […] 

When I’m looking through a proof, I can go off-track or believe some 

things that are not true. I always use examples to see that [it] makes sense.  

  

This idea is also behind the generic proof presentation that Rowland (2001) and others 

(e.g., Weber, Porter, and Housman, 2008) advocate. A similar tool discussed by some 

mathematicians was the importance of relating a proof to a diagram to better understand 

it. For instance, M2 declared that a student could not understand the proof that monotonic 

bounded sequence converges if he or she did not draw a picture of the statement first. The 

idea of linking formal proofs to pictures (or other informal models) is something that both 

mathematics educators (e.g., Raman, 2003) and mathematicians (e.g., Thurston, 1994) 

argue is important for developing understanding.  

In general, questions that can be employed to assess a reader’s understanding of this 

dimension require the reader to: 

1. Illustrate a sequence of inferences with a specific example. This involves being 

able to identify the way in which a sequence of inferences in the proof applies to a 

given specific example (e.g., “Using the ideas in the proof, how would you show 

[statement about a particular example]”?). In the proof used in this paper, one 
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might ask, “If 3, 7, 11, and 19 were the only triadic primes, what would M be and 

why would we be certain that M was triadic and none of the listed triadic primes 

divided M?” 

2. Interpret a statement or its proof in terms of a diagram. This involves being able 

to state how the ideas of the theorem statement or its proof relate to a carefully 

chosen diagram  (e.g., “Given the diagram below, label a graphical interpretation 

of [a variable within the proof] and explain how you know that [this variable has 

a pertinent property]”) 

5. Discussion 

5. 1. Summary of assessment model 

In this paper we present a multi-dimensional model for assessing proof 

comprehension in undergraduate mathematics. Our model describes ways to assess 

students’ understanding of seven different aspects of a proof. The first three types of 

assessment address students’ comprehension of only one, or a small number, of 

statements within the proof. These types of assessment, which we term local, are:  

1. Meaning of terms and statements: items of this type measure students’ 

understanding of key terms and statements in the proof. 

2. Logical status of statements and proof framework: these questions assess 

students’ knowledge of the logical status of statements in the proof and the logical 

relationship between these statements and the statement being proven. 

3. Justification of claims: these items address students’ comprehension of how each 

assertion in the proof follows from previous statements in the proof and other 

proven or assumed statements. 
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The remaining four types of assessment, which we call holistic, address students’ 

understanding of the proof as a whole. These assessment types are: 

4. Summarizing via high-level ideas: these items measure students’ grasp of the 

main idea of the proof and its overarching approach. 

5. Identifying the modular structure: items of this type address students’ 

comprehension of the proof in terms of its main components/modules and the 

logical relationship between them. 

6. Transferring the general ideas or methods to another context: these questions 

assess students’ ability to adapt the ideas and procedures of the proof to solve 

other proving tasks. 

7. Illustrating with examples: items of this type measure students’ understanding of 

the proof in terms of its relationship to specific examples. 

Although we believe that each of these types of questions measures a different facet of 

proof comprehension, there may be interesting relationships between them. For instance, 

in certain cases, being able to summarize the proof in terms of its high-level ideas may be 

necessary in order to successfully transfer these ideas and methods to another context. 

The study of these relationships is an interesting avenue for further research.  

 Also, there is not a uniform use of these assessments, since some proofs may not 

be amenable to all types of questions. For instance, our example proof did not have an 

obvious visual interpretation and therefore it would not be appropriate to relate that proof 

to a diagram. Other shorter and straightforward proofs, such as a standard proof that √2 is 

irrational, would not be possible to break into modules or sub-proofs.  

5. 2. Contributions of this paper 
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This paper builds upon the work of Yang and Lin (2008) and Conradie and Frith 

(2000) in a significant way. Yang and Lin (2008) made an important contribution toward 

delineating students’ comprehension of a proof by proposing a four-level hierarchy of 

understanding. Their focus was on the first three levels, which dealt with the meaning of 

the statements within a proof and the logical structure of the proof. This is quite 

appropriate for proofs in a high school geometry course, which is the scope that Yang and 

Lin assigned to their model. However, in undergraduate mathematics courses, where the 

proofs become longer and different proof strategies are employed, there are more 

sophisticated ways in which a proof can be understood. We incorporate Yang and Lin’s 

contributions into our model and we elaborate on other aspects of understanding a proof 

at the undergraduate level.  

Conradie and Frith (2000) proposed specific questions that they used to assess 

students’ understanding of proof in their own classrooms. Our model generates many of 

the types of questions that Conradie and Frith (2000) advocated, justifies why these types 

of questions are important, and suggests methods that other instructors and researchers 

can use to generate questions for other proofs. 

5. 3. Implications 

In this paper, we have presented a multi-dimensional model for assessing proof 

comprehension at the undergraduate level. Although we believe that teachers of advanced 

mathematics can also benefit from the model, we shall focus on its significance for 

educational researchers. 

We propose that our model can contribute to research on proof comprehension in 

various ways. First, despite the importance of proof comprehension in advanced 
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undergraduate mathematics courses and widespread complaints that undergraduates do 

not understand the proofs that they read, there is little empirical research on proof 

comprehension (Mejia-Ramos & Inglis, 2009). Examining how undergraduates answer 

the types of questions we propose can reveal how much (or how little) undergraduates 

gain from reading a proof as well as indicating the specific types of questions that 

typically give undergraduates difficulty.  

Second, the model proposed in this paper can be used as a methodological tool for 

evaluating the effectiveness of instructional interventions designed to increase the 

comprehensibility of mathematical presentations. In particular, several researchers have 

suggested novel proof presentation formats that promise to be more meaningful for 

students (e.g., Alcock, 2009; Leron, 1983; Rowland, 2001). We do not claim that our 

assessment model can conclusively answer the question of whether these pedagogical 

recommendations are effective—for instance, even if a particular proof format did not 

improve proof comprehension, it might be beneficial for students’ appreciation of proof 

in general. However, we contend that researchers could use our assessment models to 

document specific types of comprehension benefits that their innovative proof 

presentations may have. For instance, if students perform better on questions related to 

“transferring the method used in the proof” after reading a generic proof as opposed to a 

traditional proof, this would provide evidence that generic proofs facilitate students 

abilities to understand and apply the methods used in the proofs. In recent years there 

have been several empirical studies assessing the extent to which these novel formats 

improve proof comprehension (Fuller et al, 2011; Malek & Moshovits-Hadar, 2011; Roy, 

Alcock, & Inglis, 2010). However, the comprehension tests used in these studies were 
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generated using different frameworks or in an ad hoc manner. We hope that our 

assessment model can inform future research in this area by suggesting particular types of 

questions that researchers can use, and by serving as a theoretical framework for 

comparing the results across different studies of this type.
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