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Abstract 

In a recent paper (Weber & Mejia-Ramos, Educational Studies in Mathematics 76:329-344, 

2011) we reported findings from two small-scale interview studies on the reasons why and the 

ways in which mathematicians read proofs. Based on these findings we designed an Internet-

based survey that we distributed to practicing mathematicians working in top mathematics 

departments in the United States. Surveyed mathematicians (N=118) agreed to a great extent 

with the interviewed mathematicians in the exploratory studies. First, the mathematicians 

reported that they commonly read published proofs to gain different types of insight, not to check 

the correctness of the proofs. Second, they stated that when reading these proofs, they 

commonly: (1) appeal to the reputation of the author and the journal, (2) study how certain steps 

in the proof apply to specific examples, and (3) focus on the overarching ideas and methods in 

the proofs. In this paper, we also report findings from another section of the survey that focused 

on how participants reviewed proofs submitted for publication. The comparison of participant 

responses to questions in these two sections of the survey suggests that reading a published proof 

of a colleague and refereeing a proof for publication are substantially different activities for 

mathematicians. 
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1. Introduction 

In advanced mathematics courses, proof is a primary way in which teachers and textbooks justify 

and explain mathematical statements to students. Thus, students spend a significant amount of 

time reading proofs in these courses. However, research has shown that when reading proofs, 

students find them to be confusing or pointless (e.g., Harel, 1998; Porteous, 1986; Rowland, 

2001) and cannot distinguish a valid proof from an invalid argument (Selden & Selden, 2003; 

Weber, 2009). In an attempt to delineate what good proof reading looks like, some researchers 

have recently turned to the investigation of proof reading in expert mathematical practice. 

In a recent article, Weber and Mejia-Ramos (2011) coordinated theoretical accounts of 

mathematical practice with findings from two recent empirical studies—interviews with nine 

mathematicians about proof reading and observations of eight mathematicians evaluating proofs 

for correctness—to form a model of how and why mathematicians read the published proofs of 

their colleagues. In particular, they attended to the role of non-deductive evidence (e.g. empirical 

and authoritative evidence) in mathematicians’ proof reading. However, due to the relatively 

small sample size of these studies, they presented these findings as tentative hypotheses. The 

purpose of this report is to assess the viability of our results with a large number of research-

active mathematicians. 

2. Background 

2. 1. Why mathematicians read proofs 

When asked what they hoped to gain by reading the published proofs of others, mathematicians 

in Weber and Mejia-Ramos’s (2011) interview study indicated that they did not only read proofs 

for correctness, but also to gain different types of mathematical insight. In fact, some participants 

claimed they did not check published proofs for correctness at all. One particular type of insight 
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that all participants valued highly was discovering techniques or ideas that might be applicable to 

their own research. Some participants went so far as to question the value of a proof of a new 

theorem that does not contain new ideas. 

2. 2. How mathematicians read proofs 

Weber and Mejia-Ramos (2011) noted that the interviewed mathematicians talked about 

understanding a proof in three different ways, which corresponded to their description of what 

they did when they read proofs, and closely matched theoretical accounts of mathematical 

practice related to proof. 

Proof as cultural artifact. A published proof can be viewed as an artifact with a history in 

a mathematical culture. At this level, reading a proof focuses on the contextual aspects of its 

construction and publication. Accordingly, some of the interviewed mathematicians claimed that 

if a proof is written by an authoritative source with a reputation for making careful arguments, or 

if the proof is published in a prestigious journal with a reliable reviewing process, they are 

convinced that the theorem is true without reading its proof at all. In this case, these 

mathematicians appear to be relying upon the authority of the author of the proof or the journal’s 

reviewers to obtain conviction. 

Proof as a sequence of inferences. According to Rav (1999) and Azarello (2007) the 

proof of a theorem can also be conceptualized as a series of claims of the form 

A0→A1→A2→A3…→An, where An is the theorem. In this conceptualization, reading a proof 

focuses on how each new inference in a proof is derived from previous inferences. Our research 

revealed that while participants often studied how a new inference followed from previous 

inferences by constructing a sub-proof, they also did so by considering carefully chosen 

examples— e.g., to see if every integer n has the property that   𝑛! ≡ 0(𝑚𝑜𝑑  4)  or  
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𝑛! ≡ 1(𝑚𝑜𝑑  4), one participant in Weber (2008) checked this assertion for n=5, 6, 7, 8, and 24. 

This suggests empirical evidence plays an important role in mathematicians’ conviction. 

Proof as the application of methods. Participants in Weber and Mejia-Ramos’s (2011) 

interview study also talked about understanding proofs in terms of the main ideas or methods 

being applied in the proof. In this case, reading a proof focuses on these overarching ideas and 

methods. Indeed, some participants claimed that understanding a proof in these terms was as 

important, if not substantially more important, than understanding how each step followed 

logically from previous steps. Surprisingly, participants claimed they focused on these high-level 

ideas and methods, not only when attempting to understand a proof, but also when evaluating its 

validity. One participant indicated that he did not always perform a line-by-line check, even 

when refereeing a paper for publication. Similarly, some participants indicated that if they were 

convinced that the main ideas or methods in the proof were valid, they would be convinced that 

the proof was correct, even if they did not verify every line of the proof. 

2. 3. Limitations of the qualitative study 

The analysis of Weber and Mejia-Ramos (2011) has three limitations that threaten the validity of 

the findings. First, due to the relatively small sample sizes of the study, it is possible that the 

interviewed mathematicians’ views and practices are not representative of those of the larger 

mathematical community. Indeed, mathematicians are not always homogeneous in their views 

and practices (e.g., Burton, 2004, 2009; Geist, Löwe, & Van Kerkhove, 2010). Thus, it is 

plausible that the quotes we excerpted were indicative of the perspectives of some of the 

mathematical community, but a sizeable percentage of this community might have the opposite 

viewpoint. Second, although the interviewees in Weber and Mejia-Ramos (2011) were instructed 

to discuss the practice of reading published proofs in journals, some nonetheless described the 
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process of refereeing papers. Hence, the results reported by Weber and Mejia-Ramos might have 

conflated the different activities of reading proofs in published journals and refereeing proofs for 

publication. The present study addresses both of these threats to validity and provides further 

evidence of the findings reported in Weber and Mejia-Ramos (2011).  

Finally, as both the data presented in Weber and Mejia-Ramos (2011) and the surveys 

presented in this paper rely on self-report, we can make strong generalizable claims about what 

mathematicians claim to do when reading a proof. However, as Inglis and Alcock (2012) argued, 

this might not be indicative of what mathematicians actually do. Consequently we believe that 

studies examining mathematicians’ actual practice when reading proofs would complement and 

strengthen the claims put forth in this paper. 

3. The survey study 

In this study, we adapted the methodology of Heinze (2010), who recommended complementing 

qualitative data and philosophical analyses with quantitative studies to build a more robust 

understanding of mathematical practice. Heinze constructed a survey to explore the different 

criteria that mathematicians employed to accept mathematical arguments. Our survey is similar, 

and explores why and how mathematicians read proofs. 

We argue that the current survey study addresses the first two weaknesses listed above: 

we have a tenfold increase in our sample of mathematicians, and our instructions explicitly 

separate the contexts of reading published proofs in journals and refereeing proofs for 

publication. However, we note there are still shortcomings that could be addressed by further 

research. First, the current survey study relies on mathematicians’ retrospective reports about 

whether or not some events are uncommon in their reading of proofs. In general, this type of 

report could inaccurately describe participants’ actual behavior for a variety of reasons: 
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participants may be unaware of certain behaviors or events, they may be unable to recall a 

perceptible event (and its frequency), and they may report something different from what 

actually occurred (Ericsson & Simon, 1980; Nisbett & Wilson, 1977). Thus, although verbal 

reports have provided valuable information on reading research (Afflerbach & Johnston, 1984), 

these findings must be corroborated by studies employing other methodologies. 

Second, while we have differentiated the contexts of reading published proofs in journals 

and refereeing proofs for publication, and identified two different goals for reading on these 

contexts (i.e. checking correctness and gaining insight), further research may focus on 

mathematicians’ proof reading strategies for more specific sub-goals. For instance, one could 

inquire about more specific reasons why mathematicians want to comprehend a proof, and study 

whether different sub-goals influence their use of specific proof reading strategies. More 

generally, further research should address the why and how mathematicians read, not only proofs 

(the focus of this paper), but also the manuscripts and books that contain them. 

3.1. Method 

Following the methodology employed by Inglis and Mejia-Ramos (2009), we collected data 

through the Internet in order to maximize our sample size. Recent studies have examined the 

validity of Internet-based experiments by comparing this type of studies with their laboratory 

equivalents (e.g. Kranz & Dalal, 2000; Gosling et al., 2004). The notable degree of congruence 

between the two methodologies suggests that, by following simple guidelines, Internet data has 

comparable validity to more traditional data. 

Reips (2000) notes one practical threat to the validity of Internet-based studies is multiple 

submissions from the same individual. In order to address this threat, we adopted the strategy 

advocated by Reips, and implemented by Johnson-Laird and Savary (1999), and logged the IP 
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address of each participant and the time they submitted their response. Under the assumption that 

each IP address was associated with a unique individual, these data were used to screen for 

possible cases of multiple submissions. Given our adherence to Reips’ (2000) guidelines, and the 

impracticality of obtaining large samples of research-active mathematicians in any other fashion, 

we believe our methods were justified. 

Participants. We recruited mathematicians to participate in this study as follows. 

Twenty-four secretaries from top-ranked mathematics departments in the United States1 were 

contacted and asked to distribute an email to the mathematics faculty, post-doctoral researchers, 

and PhD students of that department. A total of 118 mathematicians agreed to participate.  

 When participants clicked on the link to the survey website, they were taken to a 

webpage that described the purpose of the study and asked for demographic information, 

including their status (doctoral student, post-doc, or mathematics faculty), their level of 

experience in mathematics research (0-3 years, 3-6 years, 6-9 years, 9-12 years, or more than 12 

years), their primary area of research (according to the Mathematics Subject Classification), 

whether they had refereed a mathematics research paper submitted for publication in an 

academic journal, and how many of these papers they refereed per year (0, 1 to 2, 3 to 4, 5 or 

more).  

Of the 118 participants, 55 participants stated they had refereed a paper (10 doctoral 

students, 14 post-docs, and 31 mathematics faculty), while the remaining 63 participants said 

they had not (55 doctoral students, 5 post-docs, 2 faculty members, and 1 non-response). 

Materials and procedures. After completing the demographic information, participants 

were shown a screen saying they “will be asked about what you do when you are reading a proof 

                                                
1 As ranked by the USNews.com “Best Graduate Schools” list of “top mathematics programs”. 
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that a colleague published in a respected academic journal” (the italics appeared in the text to 

participants). They were then asked to declare the extent to which they agreed (strongly 

disagreed, disagreed, neither agreed nor disagreed, agreed, or strongly agreed) with each one of 

17 statements about why and how they read published proofs. Fourteen of these statements were 

based on hypotheses generated in Weber and Mejia-Ramos (2011) and are presented in Table 1.2 

Except for statements M2 and C1, all statements began with: “When I read a proof in a respected 

journal, …” 

*** Insert Table 1 About Here *** 

After answering these questions, the 63 participants who had not yet refereed a mathematical 

paper were shown a screen thanking them for participating in the survey. The remaining 55 

participants who had refereed a mathematical paper were then shown a screen saying, “For the 

next set of questions, you will be asked what you do when you are reading a proof in a 

manuscript that has been submitted to a journal for publication. Your role in this case is as a 

referee” (italics were in the instructions to the participants). Participants were then shown the 

statements in Table 1, except that the phrase “When I read a proof in a respected journal” was 

replaced with “When I referee a manuscript”. Questions C1, C2, M1, and M4 were not included 

in this second section of the survey. 

 For both sets of questions, we included three “foil” questions of behaviors that we did not 

think mathematicians would engage in (e.g., reading a proof to explore the writing styles of 

                                                
2 The items in Table 1 are organized and named by general theme (not any particular construct): questions regarding 
the purpose of reading proofs are named as P_, items related to the use of examples are named E_, questions 
regarding proofs as application of methods are named M_, items related to contextual/cultural aspects of proof are 
named C_, and foils are named F_. Participants completing this survey were not aware to which theme the questions 
belonged to. We did not necessarily anticipate a high correlation between survey items for each theme as in some 
cases they were discussing ideas that seemed to be very different. 
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academics from different countries). These were included to verify that participants would not 

agree to saying it was not uncommon that they engaged in any plausible behavior. 

3. 2. Results 

Participants’ responses when asked about reading published proofs in journals 

The participants’ responses to reading published proofs in journals are presented in Table 2. For 

each item, we performed a one-sample Wilcoxon signed-rank test to see if participants’ median 

responses differed significantly from neutral. Because there were 14 separate tests conducted, to 

assess significance we used a Bonferroni adjustment and set the critical alpha level at .003 

(.05/14). The data in Table 2 strongly confirm the hypotheses that Weber and Mejia-Ramos 

(2011) advanced based on their interviews with nine mathematicians. For each of the 14 survey 

items used in this study, the large majority of mathematicians agreed with them (for 12 of the 

items, the level of agreement was over 70%), less than 20% of mathematicians disagreed with 

them, and their median responses differed significantly from neutral. We also note that our foils 

had their intended effect: for each foil item, less than 12% of participants agreed with the item 

and the majority of participants disagreed with it, indicating that most of the participants were 

not simply agreeing to any assertion. In summary, these data considerably strengthen the claims 

of Weber and Mejia-Ramos (2011) and limit the possibility that their findings were due to a 

small sample size or their participants conflating reading a proof for comprehension with 

refereeing. 

*** Insert Table 2 around here *** 

Of the 118 surveyed mathematicians, 69 claimed to have less than six years experience as a 

research mathematician and 49 claimed to have more than six years experience. To examine the 

effects of experience on participants’ responses, we conducted post-hoc Mann-Whitney tests 
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comparing participants with less than and more than six years experience, again using a 

Bonferroni-adjusted alpha-level of 0.003. Only two tests satisfied this standard of significance, 

with less experienced participants showing a higher level of agreement with P2 (reading a proof 

to learn new proving methods) and C3 (judging a proof to be correct because it was written by a 

trustworthy authoritative source). We note that in both cases, over 70% of both groups of 

participants expressed agreement with both assertions. These results are consistent with Heinze 

(2010), who also found only small differences between less experienced and more experienced 

mathematicians in how they obtained conviction. 

Participants’ responses when asked about refereeing a manuscript 

Table 3 presents the responses of the 54 participants3 who had experience reviewing to questions 

on how they read proofs in manuscripts that they were refereeing. For each item, we performed a 

one-sample Wilcoxon signed-rank test to see if participants’ median responses differed 

significantly from neutral. Because there were 10 separate tests conducted, to assess significance 

we used a Bonferroni adjustment and set the critical alpha level at .005 (.05/10). 

*** Insert Table 3 around here *** 

Perhaps the most noteworthy feature of Table 3 is the extent of disagreement between these 

mathematicians on some of the items. In particular: 

• 43% of participants agreed with E4—that they would sometimes gain sufficiently 

high levels of conviction in an assertion in a proof by empirical evidence to accept the 

statement as true—but 28% disagreed; 

                                                
3 One of the 55 participants who stated he/she had refereed a mathematics research paper submitted for publication 
did not answer any questions in the refereeing section of the survey. 
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• 39% of participants agreed with M3—that they would sometimes accept a proof as 

correct if they were convinced the main idea was correct without needing to check 

every line in the proof—but 44% disagreed; 

• 39% of participants agreed with C3—that they would sometimes be convinced a 

proof was correct if it came from a trustworthy authoritative source—but 41% 

disagreed. 

• 35% of participants agreed with M5—that they would sometimes not check every line 

in a proof that they were refereeing—but 52% disagreed. 

Findings such as these reveal that mathematicians’ behavior when refereeing might not be 

homogeneous. It is also noteworthy that for some mathematicians refereeing might be a less 

rigorous process than is commonly believed.  

 To explore if there was a difference in the proof-reading behaviors when mathematicians 

read published proofs in journals and when they were refereeing, we conducted a related-samples 

Wilcoxon signed-rank test comparing participants’ responses to the items about refereeing and 

the analogous items about reading published proofs in journals, again using a Bonferroni 

adjustment to set an alpha level for significance at .005. We found significant differences for the 

purposes for which they read proofs (P1, P2), how they read proofs (M3, M5), and the weight 

they gave to cultural or social factors when they read proofs (C3). Not surprisingly, participants 

were more likely to check proofs they were refereeing for correctness (P1) and were less 

interested in identifying methods they could use for their own work (P2). Participants were more 

likely to check every line in a proof that they were refereeing (M5). They were also less likely to 

believe a proof was correct because it was written by a trustworthy authoritative source (C3). 

These findings suggest that reading a published proof of a colleague and refereeing a proof for 
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publication are substantially different activities, where mathematicians use different processes to 

achieve different goals. 

 Finally, we note that the foils that we used again achieved our desired goals, with the 

majority of participants disagreeing with each of the three foils. However, we were surprised that 

22% of mathematicians agreed with F3, indicating that they sometimes would check every 

reference of a proof that they refereed. 

4. Discussion 

On reading published proofs 

We believe the noteworthy findings from this survey support the following hypotheses from 

Weber and Mejia-Ramos (2011) about how mathematicians read published proofs. First, a 

significant majority of mathematicians (74%) agreed that they sometimes do not check proofs in 

published journals for correctness (P1) and most (90%) agreed that a primary reason for reading 

published proofs is to identify methods that might be useful in their own work (P2). 

Second, our survey data supports the hypothesis that mathematicians consider the cultural 

history of a proof when evaluating the proofs they read in a journal. Indeed, 72% of participants 

declared to be commonly convinced that a proof is correct because it appeared in a reputable 

journal (C1), 83% agreed to sometimes being highly confident that a proof is correct if it came 

from an authoritative and reliable source (C3), and 67% said they considered the quality of the 

journal when evaluating the correctness of the proof (C2). These data challenge Shanahan, 

Shanahan, and Misischia’s (2011) claim that mathematicians treat proofs as context-free text 

where all that matters is the text on the page. Instead, like other scientists, mathematicians seem 

to use the source of an argument as a critical factor in determining its correctness (Weber & 

Mejia-Ramos, 2013b). 
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Third, the data provide evidence that mathematicians try to understand the proof in terms 

of its main ideas (91%, M1) and overarching methods (77%, M4). In fact, mathematicians 

claimed that understanding the methods is sometimes sufficient to judge the proof to be correct 

(75%, M3), sometimes to the point that they do not check that every line of the proof is correct 

(77%, M5).  

Further, these data suggest that participants try to understand a proof in terms of its main 

ideas before performing a line-by-line check. More than 90% of participants indicated that they 

sometimes skimmed lengthy proofs to understand their main ideas prior to reading it line-by-line 

(M2), both when they read a proof in a respected journal and when then referee. Based on their 

data from an eye-tracking study, Inglis and Alcock (2012) questioned Weber’s (2008) finding 

that mathematicians skimmed a proof at the beginning of a proof validation attempt. The data 

presented here rule out the possibility that the mathematicians in Weber’s (2008) study who 

claimed to initially skim a proof were outliers that were not representative of the mathematical 

community. Whether mathematicians actually skim proofs or whether they only claim to do so 

remains an open question (Weber & Mejia-Ramos, 2013a; Inglis & Alcock, 2013). 

Finally, these survey data provides further evidence that for mathematicians the 

consideration of examples plays a pivotal role in understanding a proof and gaining confidence 

that it is correct. The strongest statement indicates empirical evidence is sometimes sufficient for 

the majority of participants to accept a claim in a proof as correct (56%, E4), although it is 

possible that they were treating these examples generically and consequently saw this as a 

deductive justification. 

As argued by Weber and Mejia-Ramos (2011), the empirical study of expert 

mathematical practices has significant implications for mathematics education, particularly with 
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regards to proving practices at the university level. Several researchers have argued that 

mathematics instruction should have students engage in justification and argumentation activities 

in a manner that is consistent with how mathematicians perform these activities (Moschkovich, 

2002; Harel & Sowder, 2007; RAND Mathematics Study Panel, 2003), calling for more 

empirical research to be conducted on expert mathematical practices. 

Although there are important differences between why mathematicians read the published 

proofs of their colleagues and why mathematics majors read proofs in their textbooks, these 

activities also contain important similarities. In both cases, a primary reason that the individual 

studies the published proofs of others is to expand his or her knowledge about a mathematical 

domain. Unlike mathematicians, mathematics majors do not seem to try to understand proofs in 

terms of their main ideas or their overarching methods (e.g., Samkoff et al., submitted) and many 

are reluctant to resolve difficulties they experience with reading a proof by the consideration of 

examples (e.g., Weber, 2009). If undergraduates attempted to do these things when studying 

proofs, their comprehension of these proofs might improve.  

On refereeing proofs for publication 

 The purpose of Weber and Mejia-Ramos (2011) did not concern mathematicians’ 

behavior when refereeing a proof. Hence the character of survey questions on this topic is of an 

exploratory character. Geist et al. (2010) contended that “many mathematicians accept results 

from the literature as black boxes in their own research” (p. 158) and Auslander (2008) noted 

that “this is the case even if we haven’t read the proof, and even if we don’t have the background 

to follow the proof” (p. 64). Our data support these claims. Given the importance on trusting the 

work of other mathematicians, Geist et al. (2010) argued that investigating the mathematical 
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reviewing process is central to understanding and assessing the reliability of mathematical 

knowledge, but little work of this type has been done. 

 In her study of the disciplinary practices of mathematicians, Burton (2002, 2004, 2009) 

noted that while mathematicians are homogeneous about their views on certain aspects of their 

practices (e.g. the importance of making connections between different areas of mathematics), 

they are heterogeneous in their observations about other aspects of their work (e.g. the 

importance of aesthetics in mathematics). Similarly, our data shows that while there is a high 

level of agreement among mathematicians regarding the ways in which they read the published 

proofs of their colleagues, there is considerable disagreement regarding the ways in which they 

referee proofs for publication. This implies that we need to be wary of making broad 

generalizations regarding disciplinary practices in mathematics, based on the views and behavior 

of a small sample of mathematicians.  

 Some mathematicians have suggested that the reviewing process in mathematics is less 

rigorous than is commonly believed. For instance, Nathanson (2008) claimed that, “Many (I 

think most) papers in most refereed journals are not refereed… some referees check line by line, 

but many do not”. Our data also support these claims. Fallis (2003) noted that readers of 

mathematical proofs often leave untraversed gaps—gaps in a proof that are intentionally left 

unchecked by the reader. Geist et al. (2010) concluded that this implies that some published and 

accepted proofs contain gaps that were not checked by any mathematician (what Fallis called 

universally untraversed gaps). Our data offer qualified support for this position, with many 

mathematicians saying they sometimes do not check every line in a proof that they referee, but 

the majority disagreeing with this assertion. 
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We tentatively suggest that the types of evidence used to validate a proof depend upon 

the importance of the theorem and the context of the sub-claim presented. Theorems of 

fundamental importance, such as Perlman’s purported proof of the Poincare conjecture, will be 

checked at a line-by-line level by multiple mathematicians, but every year, hundreds of less 

important theorems will be checked by a single referee (which Geist et al. argue is standard 

journal practice in mathematics), many of whom will not read every line of the proof. This 

suggests that most published proofs have a lower standard of acceptance (i.e., a lower probability 

threshold that the proof is valid) and implies that gaining absolute certainty in the truth of a 

theorem or the validity of a theorem is not the goal of the reviewing and publication process 

most of the time. Indeed, many published proofs do contain errors (e.g., Davis, 1972; Hanna, 

1991). For these less important proofs, many mathematicians will use different types of evidence 

that they believe are reliable in that context. For instance, in Weber (2008), one mathematician 

was confident that an assertion was correct after checking for several examples, but indicated 

that he only did this since these types of checks were reliable in the context of number theory; he 

would not do the same in topology, his area of research. Similarly, our data suggest that some 

mathematicians do not feel the need to do a line-by-line check if they are convinced the main 

methods of the proof are correct. We conjecture that mathematicians are aware of which main 

methods can be judged to be usually correct and which methods are more problematic and 

potentially contain subtle mistakes; they likely read the details of the latter methods more 

closely. Consequently, in the refereeing process, high levels of mathematical confidence are 

developed from the strategic use of deductive, empirical, and testimonial evidence depending 

upon the context being studied and the level of confidence that is desired. 
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 Finally, Mejia-Ramos and Inglis (2009) hypothesized that proof validation (reading a 

purported proof with the goal of checking its validity) and proof comprehension (reading a proof 

with the goal of understanding it) are mathematical activities that engender different behaviors 

and, as such, should not be lumped together by mathematics education researchers studying the 

ways in which students and mathematicians read proofs. The data presented in Table 3 offer 

support for this hypothesis. The data demonstrate that to mathematicians, the way in which they 

read a published proof of a colleague (an activity they more closely associate with reading for 

comprehension) differs significantly from the way in which they referee a proof for publication 

(an activity they more closely associate with validation). This also challenges Geist et al.’s 

(2010) suggestion that for many mathematicians refereeing a proof does not involve validation; 

indeed, 76% of our participants disagreed that they did not check a proof for correctness when 

refereeing.  

While we distinguished between reading a published proof and refereeing a proof for 

publication, it might be useful in future research if different proof reading contexts and purposes 

were further categorized (e.g., do participants read a proof to learn new methods in the same way 

they read a proof for aesthetic appreciation?). We agree with Mejia-Ramos and Inglis (2009) that 

mathematics education researchers need to be aware of these differences when designing studies 

on, and discussing behaviors about, the reading of mathematical proofs. Finally, we also believe 

it would be worthwhile for undergraduates to be aware of the variety of goals and methods 

associated to mathematicians’ proof reading, as this would help these students have a better 

understanding and appreciation for this fundamental activity in advanced mathematics. 
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Table 1. Survey statements.  
 
Purposes: 
P1: … it is not uncommon that I do not check the proof for correctness. Rather I read the proof to gain some other 
type of insight. 
P2: … it is not uncommon that an important reason for my reading the proof is to gain some insights into how I can 
solve problems that I am working on. 
 
Examples 
E1: … it is not uncommon for me to see how the steps in the proof apply to a specific example. This helps me 
understand the proof. 
E2: … it is not uncommon for me to see how the steps in the proof apply to a specific example. This increases my 
confidence that the proof is correct. 
E3: … and I am not immediately sure that a statement in the proof is true, it is not uncommon for me to increase my 
confidence in the statement by checking it with one or more carefully chosen examples. 
E4: … and I am not immediately sure that a statement in the proof is true, it is not uncommon for me to gain a 
sufficiently high level of confidence in the statement by checking it with one or more carefully chosen examples to 
assume the claim is correct and continue reading the proof. 
 
Proof as application of methods: 
M1: … it is not uncommon for me to try to understand the proof in terms of its main ideas and not only in terms of 
how each step is justified. 
M2: … it is not uncommon that I skim the proof first to comprehend the main ideas of the proof, prior to reading the 
proof line-by-line. 
M3: … it is not uncommon for me to judge the proof to be correct if I am sure the main idea or method is correct (as 
opposed to having to check every line of the proof). 
M4: … it is not uncommon for me to try to understand the proof in terms of the overarching method the author used. 
M5: … if I understand the main idea of the proof and think it is correct, it is not uncommon that I do not check that 
every line of the proof is correct, but trust that the logical details are correct.  
 
Proof as cultural artifact: 
C1: It is not uncommon for me to believe that a proof is correct because it is published in an academic journal. 
C2: … it is not uncommon for the quality of the journal to increase my confidence that the proof is correct. 
C3: … it is not uncommon for me to be very confident that the proof is correct because it was written by an 
authoritative source that I trust. 
 
Foil: 
F1: … it is not uncommon that I gain confidence that the proof is correct because the author cited my work. 
F2: … it is not uncommon that an important reason that I read proofs is to explore the writing styles of academics 
from different countries. 
F3: … it is not uncommon that I also read each of the references cited by the author. 
______________________________________________________________________________ 
Note: Except for statements M2 and C1, statements related to reading the published proofs of others began with: 
“When I read a proof in a respected journal, …” In this first section of the survey, statement M2 began with: “When 
I read a lengthy proof in a respected journal, …” 
Except for statement M5, statements related to refereeing a proof for publication began with “When I referee a 
manuscript, …” In this second section of the survey, statement M5 simply said: “When I referee a manuscript, it is 
not uncommon that I do not check that every line in the proof is correct.” Statements M1, M4, C1, and C2 were not 
included in this second section of the survey.  
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Table 2. Mathematicians’ level of agreement with statements related to reading the published 
proofs of others (N=118). 
 
      p-value of one-sample 
Statement Agree Neutral Disagree  Wilcoxon signed-rank test  
P1*  74% 14% 13%  <.001 
P2* +  90% 7% 3%  <.001 
E1*  81% 8% 11%  <.001 
E2*  83% 8% 9%  <.001 
E3*  79% 13% 8%  <.001 
E4*  56% 30% 14%  <.001 
M1*  91% 3% 6%  <.001 
M2*  92% 4% 3%  <.001 
M3*  75% 15% 10%  <.001 
M4*  77% 18% 5%  <.001 
M5*  77% 14% 9%  <.001 
C1* +  72% 16% 12%  <.001  
C2*  67% 16% 17%  <.001 
C3*  83% 10% 7%  <.001 
F1*  6% 40% 54%  <.001 
F2*  5% 7% 88%  <.001 
F3*  11% 11% 78%  <.001_________________ 
*- Indicates the one-sample Wilcoxon signed-rank test reveals the median response differed significantly from 
“neutral” with an alpha-level of p=.003.  
+- Indicates a Mann-Whitney reveals significantly different response patterns from participants with over six years 
experience and participants with under six years experience with an alpha-level of p=.003. 
(The order of the questions: C1-C2-P1-F1-E2-C3-P2-F2-M1-M2-F3-M3-M4-E1-M5-E3-E4)  
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Table 3. Mathematicians’ level of agreement with statements related to refereeing a proof for 
publication (N=54). 
           
      p-value of one-sample  p-value of related-samples 
Statement Agree Neutral Disagree  Wilcoxon signed-rank test  Wilcoxon signed-rank test  
P1* +  13% 11% 76%  <.001    <.001 
P2 +  28% 28% 44%  .041    <.001 
E1*  93% 4% 4%  <.001    .827 
E2*  74% 22% 4%  <.001    .021 
E3*  83% 11% 6%  <.001    .857 
E4  43% 30% 28%  .285    .026 
M2*  93% 6% 2%  <.001    .035 
M3 +  39% 17% 44%  .169    <.001 
M5 +  35% 13% 52%  .040    <.001 
C3 +  39% 20% 41%  .578    <.001 
F1* +  4% 9% 87%  <.001    <.001 
F2*  0% 9% 91%  <.001    .052 
F3 +  22% 26% 53%  .009    .001    
*- Indicates that a one-sample Wilcoxon signed-rank test reveals the median response differed significantly from 
“neutral” with an alpha-level of p=.005.  
+- Indicates that a related-samples Wilcoxon signed-rank test reveals different response patterns by the participants 
on the refereeing items and the analogous items for reading a proof in a journal with an alpha-level of p=.005. 
(The order of the questions: P1-F1-C3-P2-F2-M2-F3-M3-E1-E2-M5-E3-E4) 


