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Abstract. In previous research, we proposed a set of proof reading strategies that we 

hypothesized can help students better understand the proofs that they read. The goal of the 

present paper is to report lessons that we learned from two instructional interventions in which 

students were taught to apply these strategies. We found suggestive evidence that implementing 

these strategies helped students understand the proofs that they read, but also found students’ 

implementation of these strategies to sometimes be problematic. We present instructional 

modifications, as well as refinements to the strategies themselves, that enabled the students to 

implement the strategies more effectively. 
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Introduction 
Mathematical proof plays a fundamental role in mathematicians’ practice.  Proof is the 

primary means by which mathematicians demonstrate that a theorem is true.  Further, proofs can 

serve as bearers of knowledge, both by providing insight for why a theorem is true, and by 

illustrating problem solving methods that can be used to prove other statements (Rav, 1999; 

Steiner, 1978).  Proofs also play an important role in advanced mathematics courses-- i.e., the 

upper-level proof-oriented university classes for mathematics majors.  In these courses, proofs 

are the dominant form of pedagogical explanation (cf. Lai & Weber, 2014; Lai, Weber, & Mejia-

Ramos, 2012),  with Mills (2011) estimating that half of the time in mathematics classrooms is 

spent dealing with proofs.  Interviews with mathematics professors indicate that the proofs 

presented in classrooms are presented so that students might gain techniques and understanding, 

and not merely conviction that the theorem statement is true (Weber, 2012; Yopp, 2011).   

Despite these efforts, studies have suggested that students have significant difficulties 

with reading1 the proofs that are presented to them.  Mathematics majors are largely unable to 

determine if a proof is correct (Alcock & Weber, 2005; Ko & Knuth, 2013; Inglis & Alcock, 

2012; Selden & Selden, 2003; Weber, 2010) and researchers have remarked that mathematics 

majors seem to have serious difficulties understanding proofs (Conradie & Firth, 2000; Cowen, 

1991). The empirical research on proof reading has largely consisted of either measuring 

mathematics majors’ success at determining if an argument is valid (e.g., Alcock & Weber, 

2005; Ko & Knuth, 2013; Inglis & Alcock, 2012; Selden & Selden 2003; Weber, 2010) or asking 

students whether an argument is convincing and using these responses to provide insight into 
                                                
1 By “reading a proof”, we are referring to looking at the proof with the intent of developing meaning from 

it. By “understanding a proof”, we mean developing the facets of the Mejia-Ramos et al. (2012) model which we 
describe shortly. Reading is a behavioral activity while understanding is a cognitive state. Hence, students will read 
proofs with the aim of understanding them, and they may or may not be successful at achieving this goal. As we 
argue in this paper, the research literature suggests that mathematics majors frequently do not understand the proofs 
that they read. 
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students’ standards of conviction (e.g., Martin & Harel, 1989; Healy & Hoyles, 2000; Segal, 

2000; Weber, 2010).  Mejia-Ramos and Inglis (2009) argued that there has been comparatively 

little research on students’ comprehension of proofs.  Because undergraduates encounter many 

proofs in their advanced mathematics courses that are supposed to increase their mathematical 

understanding, there is an urgent need for research on ways in which students can be successfully 

taught to improve their reading comprehension. Our goal in this paper is to contribute toward this 

gap in the literature. 

 In our previous work, we identified proof reading strategies (Weber, in press; Weber & 

Samkoff, 2011) that we hypothesized had the potential to improve mathematics majors’ 

comprehension of the proofs that they read. We used this research as a starting point for an 

instructional experiment where we tried to teach students these strategies using a modeling-

scaffolding-fading approach (Brown et al, 1989). By analyzing this intervention, we provide 

suggestive confirmatory evidence that some of these strategies can improve some students’ proof 

comprehension. We also illustrate that sometimes students do not benefit from using these 

strategies, largely because students could not implement these strategies correctly. In these cases, 

we present an analysis of why students failed to correctly implement the strategies and suggest 

modifications to how the strategies were introduced to students or to the strategies themselves 

that might be beneficial for future rounds of the study. 

Theoretical perspective 
In this paper, we incorporate the model of Mejia-Ramos et al. (2012) for characterizing 

and assessing students’ understanding of a proof in advanced mathematics. In this model, there 

are seven dimensions to understanding a proof: three “local” and four “holistic” dimensions. The 
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local dimensions deal with understanding that can be gleaned from carefully reading a small 

number of statements in the proof, and consist of the following: 

1) Meaning of terms and statements: Understanding the meaning of terms and individual 

statements of the proof.  This includes stating the definitions of terms used in the 

theorem statement and proof and identifying trivial implications of a given statement. 

2) Justification of claims: Understanding why each claim made in the proof follows from 

previous ones, and being able to identify claims that follow from a given statement later 

in the proof. 

3) Logical status of statements and proof framework: Understanding the logical relation 

between the assumptions and conclusions in a proof, identifying the proof technique 

being used, and conceptualizing the proof in terms of its proof framework (cf. Selden 

and Selden, 1995).   

“Holistic” ways to understand a proof concern synthesizing the entire proof or entire parts of 

the proof as a coherent whole, and include: 

1) Identifying the modular structure: Understanding how a proof can be broken into 

mathematically independent parts or sub-proofs, and how these parts logically relate to 

one another. 

2) Illustrating with examples: Understanding how a sequence of inferences can be applied 

to verify that a general theorem is true for a specific example.  

3) Summarizing via high-level ideas: Understanding the overarching logical structure of the 

proof and being able to summarize a proof in terms of these ideas. 
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4) Transferring the general ideas or methods to another context: Being able to use the ideas 

or methods in the proof to establish a different theorem. 

This model was used to specify the learning goals of the instructional experiment; we 

wanted students to improve their understanding of proofs as judged by this model.  The model 

was also used to generate assessment questions that were asked to students after each proof, 

which was done to provide students with feedback on their own understanding.  This is further 

described in the methods section of the paper. 

Strategies for understanding proofs 
Weber (in press) observed two pairs of successful mathematics majors trying to 

understand six mathematical proofs and identified six potentially useful strategies that these 

students used along with a theoretical rationale for why these strategies might improve 

comprehension.  Weber (in press) then surveyed 83 mathematicians about whether they desired 

that mathematics majors use these strategies. For five of these strategies, most mathematicians 

claimed that they desired their students use these strategies.  When Weber and Mejia-Ramos 

(2013a) surveyed 175 mathematics majors about whether they used these strategies when reading 

proofs, there was no strategy that the majority of mathematics majors claimed that they used. 

Consequently, Weber and Mejia-Ramos (2013a) conjectured that mathematics majors’ 

understanding could improve if they could be taught to apply these strategies. In the current 

paper, we explore this conjecture. 

In addition to these five strategies, we also included some strategies that were suggested 

in the literature on proof. Below, we present each strategy that we used, as well as a description 

of what the successful implementation of each strategy would entail and why we anticipate the 
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strategy will be beneficial. We categorize these strategies as those one can use before reading a 

proof, while reading a proof, and after reading a proof. 

Pre-reading strategies, or strategies to apply after one reads the statement of the theorem 

and before reading its proof: 

1. Make sure you understand the definitions of all the terms:  The student will try to 

state the definition of any term used in the theorem statement. This strategy was 

included in response to Conradie and Firth’s (2000) observation that students 

frequently read proofs without being able to state the definitions of the involved 

concepts. We anticipate this strategy can help students with the Meanings of Terms 

and Statements aspect of the proof comprehension model. We note that being able to 

state the definition of a term is clearly not a sufficient condition for understanding the 

meaning of that term.  Bills and Tall (1998) called a definition “formally operable” 

for a student when that student “is able to use it in creating or (meaningfully) 

reproducing a formal argument”.  Selden (2012) and Harel, Selden and Selden (2006) 

argued that undergraduate students need to come to make sense of definitions in this 

way to more fully understand key concepts in proofs.  While we agree with this point, 

we doubt definitions could become operable for students if they are not first able to 

recall and consider these definitions.  

2. Illustrate the theorem with an example: The student will try to instantiate an example 

in the theorem statement and check that the theorem holds true in this case. This was 

based on Weber’s (in press) observation that their strong students would use 

examples to understand both the theorem and statements in the proof they found to be 

problematic and should help students with the Meanings of Terms and Statements 

aspect of the proof comprehension model. 

3. Describe how you would try to prove the theorem: This was a strategy highlighted in 

Weber (in press). We found that when the students tried to prove the theorem, they 

were led to consider issues such as what proof methods might be used, what should 

be the assumptions and conclusions of the proof, and what parts of the proofs would 

cause them difficulty, thereby helping students with the Logical Status of Statements 
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and Proof Framework aspect of the proof comprehension model. We also found that 

this motivated students to read these proofs and focused their attention on 

conceptually interesting aspects of the proof rather than routine details.  To avoid 

misinterpretation, we note that the intent here is not have student actually prove the 

theorem, but only to have students choose a method to see how it might proceed. In 

their proof validation study, Selden and Selden (2003) asked participants to prove the 

statement for which they would subsequently read supporting arguments. Not 

surprisingly, participants were generally unable to produce a proof. 

 

While reading the proof: 

4. See if the proof can be broken into independent parts: This was a strategy highlighted 

in Weber (in press). The student will try to identify any logically independent 

modules in the proof, as well as any sufficient conditions that are established to arrive 

at the conclusion. This will help students see the overall structure of the proof (in the 

sense of Leron, 1983), helping with the Modular Structure and Summary aspects of 

the proof comprehension model, as well as see how different assumptions in the proof 

were used. 

5. Identify what proof methods are being used: This was a strategy highlighted in Weber 

(in press). The student will try to identify the assumptions and conclusions of the 

proof to determine what proof technique (e.g., direct proof, proof by contradiction, 

proof by contraposition, proof by induction, or proof by cases) is being used in the 

proof, which directly leads students to consider the Logical Status of Statements and 

Proof Framework aspect of the proof comprehension model. 

6. See why confusing statements are true with a particular example.  This was a strategy 

highlighted in Weber (in press). We also note that mathematicians frequently apply 

this strategy when they read proofs (e.g., Weber, 2008). This can help students with 

the Justification of Claims and Illustrate with Examples aspects of the proof 

comprehension model. 

After reading the proof: 
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7. Compare the approach you chose to the proof that you read: This was a strategy 

highlighted in Weber (in press). The student will be able to note any differences in 

how they would approach the proof and how the proof proceeded. This will help 

students understand the overall procession of the proof as well as help them 

appreciate the strengths of these methods. This may help students with the Transfer 

the Methods of the Proof aspect of the proof comprehension model. 

The goal of our instructional experiment was to teach students to apply these strategies 

when carefully reading a proof, as they were described above. By analyzing the implementation 

of this instruction and our participants’ application of these strategies, we found suggestive 

evidence that some of these strategies appeared to increase participants’ comprehension of proofs 

of the specific proofs that they read. We present illustrations that by applying the strategy, the 

participant developed some insight about the proof they were reading or later commented that the 

application of the strategy was helpful to them (although we did not verify that students 

performed better on a post-test, so the evidence here is merely suggestive). We also found other 

strategies were problematic for the participants to implement. When participants had difficulties 

implementing a strategy, we provide hypotheses for why these difficulties arose and suggest 

improvements for future iterations of our study.  

The design research paradigm and “instructional experiments” 
This study employs many of the principles of design research (Cobb et al., 2003) to 

develop an instructional intervention with the goal of having students to apply the strategies 

listed in this paper to improve their abilities to understand proofs. The goal of design 

experiments is to develop effective teaching methods while simultaneously developing theories 

for how students can learn the target domain. Following Cobb et al. (2003), we conceptualize 

design research as forming initial hypotheses on the following: (i) how students reason upon 

entering the classroom, (ii) what appropriate learning goals should be from the point of view of 
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the researcher (i.e., what it means to understand the concepts in question), (iii) how students 

might come to achieve these goals, and (iv) how instruction can be designed to help students 

achieve these goals. An instructional intervention is implemented and this implementation is 

recorded. Careful observations of this implementation, both between sessions during which this 

intervention is taking place and after the intervention is completed, allow the researcher to seek 

confirming or disconfirming evidence of the each of the initial hypotheses. Any observed 

disconfirming evidence can then be used to refine the hypotheses, and thereby develop better 

instruction, to achieve the study’s instructional goals. This can also advance our understanding of 

how students learn and what it means to understand a concept. We describe each of our four 

initial sets of hypotheses below. 

How students reason. 
The research literature reveals several limitations in how mathematics majors typically 

read proofs. Weber and Mejia-Ramos (2014) highlighted several undesirable beliefs that 

mathematics majors hold about proof reading: Mathematics majors believe understanding a 

proof is tantamount to understanding each inference within a proof (as opposed to the holistic 

understandings described earlier in this paper). Mathematics majors do not believe they should 

have to justify statements when reading a proof; a well-written proof will include those 

justifications. Finally, the majority believe that most proofs they encounter in advanced 

mathematics can be understood in under 15 minutes. Weber and Mejia-Ramos (2014) also found 

that mathematicians find it undesirable that students hold such beliefs. 

Previous research supports the idea that mathematics majors are limited in the ways they 

attempt to read proofs: They tend to focus on calculations, rather than the overarching structure 

of a proof, when reading proofs (Inglis & Alcock, 2012; Selden & Selden, 2013). They do not 
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spend much effort inferring how new statements in a proof follow from previous ones (e.g., 

Alcock & Weber, 2005; Inglis & Alcock, 2012). They also are unlikely to generate examples or 

draw diagrams to help them understand a proof and spend little time reading the proof (Weber, 

2009). Further, students are often unfamiliar with the formal definitions of concepts (Moore, 

1994) and might read a proof without resolving their difficulties in this regard (e.g., Conradie & 

Firth, 2000). In summary, this research reveals that students do not attend to pertinent 

information when reading a proof and that this may be due, at least in part, to their beliefs about 

what it means to understand a proof and what their responsibility when reading a proof should 

be. 

Learning goals 
The goal of this study was for students to come to a more complete understanding of 

proofs that they read based on the model of understanding by Mejia-Ramos et al. (2012) 

described earlier in this paper. It is reasonable to expect that what students would gain from 

reading the proof would be affected by their personal goals for reading the proof.  Therefore, we 

made our desired goals explicit to students at the beginning of each of the two iterations of our 

study, as described in the Procedure. 

How students might come to achieve these goals 
We hypothesized that students could become better readers of proofs if they enacted the 

strategies that experts (mathematicians or strong students) use to read proofs. These strategies 

were described in the previous section.  

How instruction can be designed 
Our first attempt to teach students to apply these strategies was through a “cognitive 

apprenticeship” (Brown et al., 1989).  In this paradigm, a mentor models a skill, provides 

scaffolding to learners as they begin to learn the skill, and gradually “fades” as students become 
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proficient in the skill. This is all done in the context of authentic tasks; this allows students to 

perceive the contextual application of the skill (rather than asking students to apply the skill in 

decontextualized academic or laboratory settings and hoping that the student can later transfer 

this skill to more authentic tasks). The use of authentic tasks also allows students to appreciate 

the value of implementing the skill since they can see how it contributes to accomplishing a 

meaningful higher-order goal.  While cognitive apprenticeship provides principles for designing 

instruction, this perspective does not directly prescribe a specific instructional intervention.  To 

specifically teach the reading strategies described in this paper, we adapted Palincsar and 

Brown’s (1984) “reciprocal teaching” method. Palinscar and Brown introduced “reciprocal 

teaching” in a classic article on reading comprehension where they reported a series of studies 

that showed this method could improve children’s comprehension of non-mathematical 

expository texts.  In these studies, students were taught to use four reading strategies: 1) 

summarize the main ideas, 2) ask questions related to the text, 3) clarify difficult parts of the text, 

and 4) make predictions.  These strategies were first defined and modeled by a teacher-

researcher.  Students were given more responsibility in using the strategies during a guided 

practice phase.  During this phase, the teacher-researcher provided positive feedback for good 

uses of a strategy, and provided scaffolding in the form of prompts or modifications when their 

application of these strategies was problematic, remodeling the strategy if necessary. Students 

took turns playing the “teacher” role by implementing each of the strategies. Gradually, the 

teacher-researcher’s role was diminished as students gained proficiency in implementing these 

strategies.  Palinscar and Brown (1984) reported large and robust learning gains when struggling 

readers were provided with this instruction. Given the similarity of our instructional goals (i.e., 

having students implement research-based strategies to improve comprehension of texts) and the 
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success of the reciprocal teaching studies in multiple environments (e.g., see Doolittle et al., 

2006, for a summary of the success of using this method in different domains at the collegiate 

level), we judged reciprocal teaching to be a useful starting point for instructional design. We 

describe how this structure was adapted for our purposes in detail in the Procedure. 

Instructional experiment 
 Although our study is based on the broad goals and philosophies of design research—

specifically we use an iterative process to improve our understanding of how students can 

understand proofs, how they should learn, and how instruction should be designed—there are 

some key differences between our research methodology and that used in a design experiment. 

First, the instructional method that we used, reciprocal teaching, is not based on a theory of a 

process for how students’ understandings transform over time. Rather, reciprocal teaching is 

what diSessa and Cobb (2004) referred to as a “framework for action”— or heuristic guidelines 

for designing effective instruction. Second, the bulk of the analysis that we report in this paper is 

based on retrospective analysis rather than the analysis that occurs as the instruction is 

progressing. To distinguish between what we did and a design research study, we refer to this as 

an “instructional experiment” which we view as the first stage to developing an instructional 

innovation. 

Methods 

Participants. 
Our instructional experiment consisted of two iterations. All participants were recruited 

from the same large public university in northeastern United States.  For the first iteration, 

students were recruited from an undergraduate real analysis course.  Eight students agreed to 

participate in the study, but attendance varied by meeting.  On average, each meeting was 

attended by six participants.  Meetings were conducted once every one to two weeks during the 
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semester, and each meeting lasted approximately 2 hours.  There were four meetings with this 

group of participants.  For the second iteration, two students, Matt and Tony, were recruited from 

a class preparing mathematics high school teachers.  Both students had just finished their fourth 

year in a five-year program, and had already taken real analysis.  The second iteration also met 

for four sessions.  The purpose of the second iteration was to examine in depth the hypotheses 

that were formed in the first iteration.  The more personal format of a two-person case study 

facilitated this goal, as the focused discussion allowed us greater insight into the thinking of each 

individual participant. 

Materials. 
The original proof strategy sheet designed for this study can be found in Appendix A and 

was used for the first two sessions of Iteration 1.This strategy sheet was modified after the 

second session of Iteration 1 after new hypotheses emerged from our analysis.  The modified 

strategy sheet is included in Modified proof reading strategies.Appendix B and was used for 

sessions 3 and 4 of Iteration 1 and for the entirety of Iteration 2.  Additionally, eleven proofs for 

students to read were used for this study.  The proofs came from two sources.  First, some proofs 

were obtained from the textbook used for the real analysis course that the students were 

completing.  Other proofs were designed by our research team.  We strove to choose proofs with 

the following characteristics:  First, the proofs were accessible to students with the particular 

background knowledge we had assumed (math majors who were enrolled in or had completed a 

real analysis course).  We did not want students to spend a substantial amount of their efforts 

attending to unfamiliar concepts, and as such, proofs were chosen to rely on content from basic 

number theory, calculus, and real analysis (a course all students were completing in Iteration 1 or 

had completed in Iteration 2).  Second, for the purposes of authenticity, proofs were intended to 

be similar to those they would see during the course of their programs of study.  Finally, proofs 
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were chosen to be both moderately difficult, so that we could observe students encountering real 

difficulties in understanding the proofs they read, and complex, so that students had 

opportunities to implement the strategies provided for them.   

All proofs were formatted in the same way: Each proof appeared on an individual page 

with the theorem at the top of the page, each assertion set on a new line, and lines numbered for 

facilitating discussion.  These proofs are included in Appendix C, and the order in which the 

proofs were presented in each iteration can be found in Table 1.  In the remainder of this paper, 

this paper, we refer to the nth proof in Appendix C as “Proof n” and the corresponding theorem 

statement as “Theorem n”. 

 Iteration 1 Iteration 2 
Session 1 

 
Proof 1 Proof 1 
Proof 2 Proof 2 

Session 2 
 

 

Proof 3 Proof 3 
Proof 4 Proof 4 
Proof 8 Proof 5 

Session 3 
 

Proof 6 Proof 6 
Proof 10 Proof 7 

Session 4 Proof 11 Proof 8 
Proof 9* 

Table 1. The order in which the proofs were presented to students in Iterations 1 and 2. 

(*- Proof 11 was not used in Iteration 2 as the theorem was proven in a problem-solving 
class that the pair of students completed. The students in Iteration 1 had not taken this problem-
solving course). 

Procedure. 

Palincsar and Brown’s (1984) “reciprocal teaching” was adapted for teaching these 

comprehension strategies.  In the initial class meeting, the teacher-researcher introduced the 

study and explained that the students should read proofs for understanding. The teacher-

researcher did not clarify what was meant by understanding. The teacher-researcher then 

modeled each of the strategies he or she wants students to use within the context of Proof 1, a 
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proof of the claim that a positive integer is square if and only if it has an odd number of divisors. 

In Iteration 1, each student was handed the strategy sheet in Appendix A. In Iteration 2, both 

students received the revised strategy sheet in Appendix B.  The strategy sheets described each 

of the strategies that were discussed earlier in this paper. Next, students were given proofs and 

individual students were asked by the teacher-researcher to apply a specific strategy that the 

teacher-researcher had modeled.   After the student had implemented the strategy, other students 

were encouraged to provide feedback on whether the strategy had been implemented 

successfully or whether they had done anything differently. After inviting student participation, 

the teacher-researcher provided scaffolding by giving feedback to the students on how well they 

had implemented the strategies, giving positive feedback on aspects of the implementation that 

had been done well and building off students’ contributions if a strategy had been implemented 

incorrectly. In the latter cases, the teacher-researcher would provide corrective feedback, 

explaining why the students’ approach was inadequate and again modeling the desired behavior. 

The teacher-researcher progressively reduced this support, allowing students to take increasing 

responsibility for implementing the strategies. 

We provide a few illustrations of the teacher-researcher’s feedback. First, in Iteration 1, 

Session 2, a student attempted to implement the strategy of trying to prove a theorem oneself 

before reading its proof with Theorem 3 by claiming that he could prove it “by contradiction”, 

perhaps by using “the Squeeze Theorem”.  The instructor believed that the student did not go 

into sufficient detail to reap the benefits of this strategy, as important benefits of this strategy 

include having students actually produce the proof framework and see where their methods 

might be difficult to implement. Consequently, the instructor prompted the student to think more 

deeply about how he would prove the theorem by asking what difficulties he thought this 
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approach would encounter. In a separate instance, during Iteration 1, Session 3, a student noted 

that Proof 10 was a direct proof but did not say how he made this (correct) observation. The 

instructor then asked the student how he knew this, leading the student to observe that the last 

line of the proof ends with the conclusion of the theorem statement.  The instructor brought the 

group’s attention to this response and noted that this approach is a good one for determining if 

the proof is a direct proof.  The support for a given strategy gradually decreased as students 

showed proficiency in adopting the strategy. To help the reader get a sense for how the 

instruction proceeded, we include a transcript of an in-class discussion in Appendix D. 

After students had read and discussed a proof, the written proof was taken away and the 

instructor asked individual students comprehension questions.  These questions were based on 

the theoretical model of Mejia-Ramos et al. (2012) discussed earlier in the paper and typically 

included asking a student to summarize the ideas of the proof, provide justification for particular 

steps in the proof, and determine if the method the proof used could be applied in a similar 

setting. These questions may have contributed to students’ conceptions of what it meant to 

understand a proof and what types of understandings the teacher-researcher was expecting of the 

students.  Students’ responses were evaluated immediately by the instructor, and students were 

given corrective feedback as necessary.  This methodology of giving students frequent 

assessments was also employed in the Palincsar and Brown (1984) studies.  The purpose of these 

assessments was both to provide feedback to students on their understanding of texts and to 

provide feedback to the teacher-researcher on the extent to which students were understanding 

the text. 

Throughout both iterations, students were asked for their feedback on the strategies, 

including which strategies they found helpful and which they found unhelpful, both during the 
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class meetings and on questionnaires distributed at the end of iteration session.  From this 

feedback as well as their actual implementation of these strategies, hypotheses were made about 

the effectiveness of these strategies as well as the methods used to teach these strategies.  All 

student work was videotaped so that a retrospective analysis could be conducted. 

Analysis. 
The sessions were analyzed both retrospectively and in real-time by the instructor.  Real-

time analysis consisted of noting occasions when there was evidence that students either 

benefitted or failed to benefit from the use of a particular strategy.  Tentative hypotheses were 

formed to explain students’ successes or failures, and corrective action was taken on the basis of 

these hypotheses if deemed appropriate.    After each session, these hypotheses were recorded 

and were revisited during the retrospective analysis that occurred after each iteration was 

complete.  In the retrospective analysis, each of the videotapes of student work was broken into 

segments.  Each segment consisted of one or more students attempting to implement a strategy in 

a particular way.  Instances in which students expressed confusion over a particular aspect of a 

proof or a strategy were also coded, as were students’ responses to the assessment questions 

asked after each proof was discussed.  In total, 119 segments were coded from the videotapes 

where the students attempted to implement a strategy that was appropriate for that proof, with the 

time length of each segment ranging from 30 seconds to several minutes. 

For each segment, we noted the strategies to which students were attending, as well as the 

particular actions taken by the student (e.g., reading, listening to their classmates) and the 

instructor (e.g., clarifying a strategy, prompting students to use the next strategy), We also coded 

whether a strategy was relevant to the proof. For instance, for Theorem 3 (There is a real number 

whose fourth power is exactly one larger than itself) and Proof 3, the strategy of illustrating the 



Teaching proof comprehension 18 

 

proof with an example would not be relevant (Proof 3 is not constructive), nor would the strategy 

of breaking the proof into independent sub-parts (Proof 3 is only 4 lines long). The segments that 

were not relevant were not included in the 119 segments for subsequent analysis. We then coded 

the quality of students’ implementation of the strategy as (i) complete and correct, (ii) partially 

correct, or (iii) superficial or incorrect.  As an example, the strategy of “partitioning a proof” 

would be appropriate when applied to a proof that consisted of proving two directions of an “if 

and only if” statement. If a student correctly partitioned the proof into the two separate sub-

proofs, this would be coded as a “complete and correct” implementation of the strategy but if 

students claimed that the proof could not be partitioned or partitioned the proof incorrectly, this 

segment would be coded as a “superficial or incorrect” implementation.  The “partially correct” 

code was used when there were correct aspects of a student’s implementation but other aspects 

were either incomplete or incorrect.  For instance, in identifying the proof methods used in a 

proof, a “partially correct” implementation could consist of correctly identifying the method in 

one part of the proof, but failing to identify the correct method in another part.  Finally, it was 

noted whether there was any evidence of students’ benefitting from their use of the strategy, as 

well as a possible explanation for why students benefited.  Evidence consisted of excerpts from 

students’ dialogues as they discussed the proof as well as student feedback on the helpfulness of 

the strategy sheet.   

We were particularly interested in instances in which the strategy was coded as relevant 

but the implementation of the strategy was not coded as “complete and correct”. We revisited 

each of these instances and developed hypotheses for why students failed to implement the 

strategy appropriately.  
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Results 
The result of the analysis was a table of instances in which students attempted to 

implement strategies, their successes and difficulties in implementing the strategies, and 

hypothesized causes for these successes and difficulties.  Table 2 presents the number of times 

each strategy implementation was coded as “complete and correct,” “partially correct,” and 

“superficial or incorrect”.  

The results section is organized by strategy. For each strategy, we present the themes that 

emerged, illustrating these themes with excerpts of student work from Iterations 1 and 2.  In 

cases where we identified students’ difficulties in implementing a strategy, we provide a 

hypothetical cause for these difficulties, and describe what steps, if any, we took to alleviate 

these difficulties, and the perceived effects of making these modifications. In instances where we 

did not alter instruction to improve students’ implementation of the strategy, we hypothesize 

actions that we could take in future iterations of this study.  Data from Iterations 1 and 2 are 

considered together, and the results are organized by strategy. 

 

Strategy # Complete and 
correct 
implementations 

# partially correct 
implementations 

# superficial or 
incorrect 
implementations 

Understand 
definition 

8 3 12 

Illustrate theorem 
with example 

13 1 2 

Try to prove before 
reading proof 

6 8 10 

Compare proof 
approach to one’s 
own approach 

10 0 5 

Partition proof 9 0 8 
Identify proof 
methods 

15 3 1 
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Instantiate lines of 
proof with example 

3 2 0 

Table 2. Counts of occurrences of different qualities of implementation for the strategies. 

Strategy 1: Understand the definitions of terms in the theorem statement. 
This strategy was coded as relevant for all theorems except Theorems 2 and 3, which did 

not contain advanced mathematical terms.  For this strategy, attempts were coded as “complete 

and correct” when students correctly recalled the definition of a concept, “partially correct” for 

flawed accounts of definitions, and “superficial or incorrect” when the definition contained 

major errors or no definition was provided. .  There were 8 “complete and correct”, 3 “partially 

correct”, and 12 “superficial or incorrect” implementations recorded.  We first describe a case 

where this strategy appeared to be helpful for students.  An instance where this was particularly 

salient was in Iteration 2, Session 3, where Matt and Tony were reading Proof 7, a proof of the 

claim that e is irrational.  This proof relies on the power series definition of e and begins by 

assuming, for contradiction, that e is rational.  After seeing the theorem statement, Matt and 

Tony considered applying this strategy: 

Tony2: Do you want to write the definition of e? 

 Matt: No. [laughs] 

Tony: I don’t know if it will be used, I don’t think it will be.  

[from Iteration 2, Session 3, Proof 7] 

Matt agreed with Tony, suggesting that these students did not feel it was appropriate to 

implement this strategy because they did not feel the definition of e would be used in the proof. 

(This is consistent with the findings of Conradie and Firth (2000), in which these authors 

remarked that students would read a proof without knowing the definitions of the involved 

concepts as well as illustrating an interesting unproductive belief about students and the 

                                                
2 All names are pseudonyms.  Quotes from students have been lightly edited for readability. At no point 

were words added and we do not believe we changed the meaning or spirit of the utterances. 
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importance of definitions). The instructor then urged the students to generate a definition for e, 

after which Tony wrote down the limit as n approaches infinity of (1+1/n)n.  The instructor asked 

if they remembered any other definitions, and they recalled there was a “summation” definition 

but were unable to remember it.  The instructor then provided them with the power series 

definition of e, and the students proceeded to implement the next strategy of thinking how they 

would prove the theorem.  Matt and Tony discussed how the proof might look, comparing it to a 

proof of the square root of 2 being irrational: 

Tony: Would you do a contradiction, assume it is rational? 

Matt: Assume it is rational. 

Tony: Then it could be written as a over b.  I remember the square root of 2 proof going like 

this— 

Matt: --Yeah but, the thing is when you square the square root of 2, you get 2.  I mean what are 

we going to…what is our contradiction going to come from? 

Tony: Oh right, that’s where that comes from. 

Matt: Because like you’re just going to get eb equals a.  [laughing] What is that going to tell us? 

 Tony: Good point. 

Matt: There’s nothing we know how to work with, like the square root.  

[from Iteration 2, Session 3, Proof 7] 

This excerpt illustrates how students were able to generate one definition of the 

mathematical constant ‘e’.    After this excerpt, these students expressed that they were expecting 

a definition of ‘e’ to be used somewhere in the proof, and expressed curiosity as to how the proof 

was going to use this definition.  In the post-interview, both Matt and Tony identified this 

strategy as being particularly helpful for them in real analysis.  In Tony’s words, “The definitions 

aren’t easy to remember, and a lot of times in proofs, just as long as you can remember the 
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definitions, you’ve pretty much got it.”  Nevertheless, Matt admitted to not always implementing 

this strategy when reading proofs: 

Matt: I think I’m guilty of reading proofs and not really understanding the definitions fully. Like 

you just take it for granted that you think you know it. 

[from Iteration 2, Session 3, post-interview] 

These excerpts suggest that attending to the definitions of concepts can not only help 

students understand the meaning and terms of statements, but can be critical to students’ 

understanding of the nature of proof in general.  

In the first two sessions of Iteration 1, there were three instances of students merely 

identifying the key terms in the theorem statement without stating their definitions. Clearly this 

would not help students understand the terms, a primary reason for having students list the 

definitions.  We believed they, like Matt, may have assumed that they knew the definitions of 

these terms.  As a result of our observations, we modified the strategy sheet immediately after 

the second session of the first iteration, making it more explicit that students should actually state 

the definition, and if they realized that they were unable to correctly state the definition, to 

consult a teacher or textbook.  The modified sheet is given in Appendix B.  There were no 

recorded instances of students only identifying terms occurring after the second session of the 

first iteration, suggesting that our modifications alleviated this problem. 

The previous excerpt also revealed to us a complication with this strategy.  Although the 

students were able to recall one definition of e, their definition was not particularly useful for the 

proof we chose.  The teacher-researcher found it necessary to encourage the students to seek 

another formulation. When concepts are defined or conceptualized in multiple ways (e.g., there 

are many formulations of normal subgroups in group theory), even a proper implementation of 
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this strategy does not guarantee that students will recall the relevant definition.  This finding 

suggests that an important role that a teacher could play is stating which definition of a concept 

is relevant for the proof that is being written, acknowledging that there are multiple definitions 

that can be chosen, and explaining why the particular definition was suitable for this proof. 

Strategy 2: Illustrate the theorem with an example. 
This strategy was coded as relevant for all of the theorems except Theorem 7, which 

claimed that e is an irrational number.  An implementation of this strategy was coded as 

“complete and correct” when a student instantiated a theorem statement with a particular 

example, and verified that the theorem held true for this example. “Partially correct” responses 

involved a student claiming that an object was an example, but failing to verify that the theorem 

held true for this example.  “Superficial or incorrect” implementations occurred when a student 

was unable to think of a valid example instantiating the theorem statement. There were 13 

instances coded as “complete and correct”, 1 coded as “partially correct”, and 2 coded as 

“superficial or incorrect”.  We describe two instances from Iteration 2 in which students’ use of 

this strategy led them to investigate why theorem might be true in general.  In Iteration 2, 

Session 4, Matt and Tony implemented this strategy by computing the first few terms of the 

sequence sn in Theorem 8, defined by  

𝑠! = 2, 𝑠!!! = 2+ 𝑠! for n ≥ 1 

Immediately after doing this, Tony remarked, “all right, well it looks like it’s getting closer to 

two.  Let’s see if we can get past two.”  After checking the next few terms of the sequence, Tony 

remarked, “what’s happening here?  We’re adding two, but it’s never actually going to get past 

four.  So we just keep on taking square roots, it should always be below two.”  This logic is close 

to that used in the actual proof in showing sn is bounded. Hence, this can help students appreciate 
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the method used in the proof and see the overarching logic used in the proof, which is important 

for providing a summary of the proof.    

 A similar instance occurred in Iteration 2, Session 2, where Matt and Tony implemented 

this strategy for Theorem 3, that there is a real number whose fourth power is exactly 1 larger 

than itself, by raising different numbers to the fourth power.  After evaluating 14 and 24, Tony 

quickly realized that 1 was “too small” and 2 was “too large”, and that there must be a number 

between 1 and 2 satisfying the claim.  Again, this was similar to the logic employed in the actual 

proof, which formalized this idea by employing Rolle’s Theorem on the appropriate function. 

There was also a case in which students revealed a key misconception about a 

mathematical concept in the course of implementing this strategy.  Though this was not one of 

our original research goals—indeed, we deliberately chose proofs where we thought students’ 

concept understanding would be unproblematic—there were nonetheless instances when this 

strategy appeared to help students in this manner.  In Iteration 2, Session 4, Matt and Tony 

attempted to implement this strategy for Theorem 9, a claim pertaining to subsequences.  These 

students initially struggled to recall the definition of a subsequence, and even after this definition 

was provided to them, they continued to grapple with the concept by considering subsequences 

of the sequence 1/n: 

Tony: OK.  1/n.  Positive integer, so our first few terms are 1, ½, [writing], 1/3, ¼ and so on, all 

the way up to 1/n, it’s an infinite series, so actually it should go further.  Right?  If we want to 

break it down into subsequences… 

Matt: Mm-hmm.  We can take uh…1 over 2— 

Tony: --we could break it down into sub—like uh, really any number of those, we could just take 

any number of those sequences, right? So I could say like— 
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Matt: Wait, couldn’t we like— 

Tony: 1/1, 1/2, 1/3 as my first one, and the rest of them?  Or do they both have to be infinite?  

[from Iteration 2, Session 4, Theorem 9] 

In the above excerpt, we see that Tony, in attempting to implement this strategy, revealed 

a key misunderstanding about subsequences—that they include finite as well as infinite 

sequences. This gave the teacher-researcher the opportunity to intervene and address this 

misunderstanding before students saw the proof. The instructor pointed out that subsequences 

were not allowed to be finite, after which Matt suggested they look at subsequences of the form 

1/2p and 1/(2p+1), and promptly verified that the theorem statement held in this example: 

Matt: So why don’t we take an even denominator and an odd denominator. 

Tony: OK, that would both be infinite.  Good. 

Matt: So for our first one, 1/2p…[both writing] 

Tony: That…see that helps, because [inaudible] it is kind of…now I’m remembering a little bit. 

Matt: So if we show… 

Tony: Do these sequences converge? 

Tony: For sequences, I believe this does, right?  Because as n approaches infinity— 

Matt: --so it’s convergent is…zero? 

Tony: --it should get to zero.   

Matt: Right. 

Tony: For a series—a sequence, it is.  And so for both of these, since this one must reach infinity, 

and that one as well, they would both also converge. 

Matt: To zero, yeah […] 

Tony: …yeah. That was a good example, too.  Now I have a better idea of subsequences as well.  

So that helped, I think.  

[from Iteration 2, Session 4, Theorem 9] 

Hence, exploring this example helped reveal a misconception that students had, which in turn 

enabled the students to develop a better understanding of the term subsequence used in the proof.  
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 Despite the above successes in using this strategy, there were a few instances in which 

the students did not implement this strategy correctly.  Instances of implementations that were 

not coded as “complete and correct” included being unable to generate an appropriate example or 

generating an example but being unable to articulate how it related to the theorem.  Overall, 

however, this strategy was easily implemented by students, and the previous excerpts indicated 

several potential benefits of employing it. 

Strategy 3: Describe how you would try to prove the theorem| 
Strategy 7. Compare the approach used in the proof to the one you 
described. 

We treated these as “sister strategies” since we conjectured that the implementation of the 

first is related to the implementation of the second.  Both strategies were coded as being relevant 

for every proof.  For Strategy 3, attempting to prove the theorem, a “complete and correct” 

implementation was one in which the student considered the proof methods that might be used, 

what they should assume and prove, and any difficulties they might encounter.  The “partially 

correct” code was assigned when a student indicated an appropriate proof approach but did not 

investigate this approach in considerable detail.  The “superficial or incorrect” code was applied 

when a student’s response was very short, or the suggested proof approach was inappropriate.  

Students were not necessarily coded as not implementing a strategy in a “complete and correct” 

manner if the proof approach they chose differed from the one used in the proof, as long as we 

determined that it could be adapted into a workable proof.  There were 6 “complete and correct” 

implementations, 8 “partially correct” implementations, and 10 “superficial or incorrect” 

implementations in all.  No student was observed creating a complete proof. 

Of the 18 attempts not coded as “complete and correct”, 9 occurred in the first two 

sessions of Iteration 1.  In these first sessions, it became clear to us that students were only 
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superficially attempting to prove the theorem.  For example, in Iteration 1, Session 3, after 

asking students how they would prove the theorem statement for Proof 3, one student replied by 

saying “induction” without further elaboration.  This behavior was in contrast to the students in 

Weber (in press), who considered the proof methods that might be used, what they should 

assume and prove, and any difficulties they might have encountered.  We therefore included 

these goals as sub-steps for this strategy (see Appendix B).  Modifications were also made to the 

instructional intervention by providing more opportunities for students to discuss their 

implementations of the strategies with one another (which we discuss later in this paper).  There 

was some evidence of improvement in subsequent sessions.  As indicated in Table 3, “complete 

and correct” responses occurred with a higher frequency after making the changes described 

above.  While the implementation was still sometimes problematic, there were several instances 

where students showed evidence of potential learning, especially when this strategy was coupled 

with comparing the predicted proof approach to the one used in the proof.   

 Complete and correct Partially correct Superficial or incorrect 
Before modifying 
Strategy 3 

1 4 5 

After modifying 
Strategy 3 

5 4 5 

Table 3.  Frequency of occurrence of different qualities of attempting to prove the 

theorem before and after modifying the strategy. 

For the strategy of comparing proof approaches, an attempt was coded as “superficial or 

incorrect” when a student made a superficial comparison between the approach used in the proof 

and the one generated before reading the proof.  For instance, some students merely compared 

the proof technique employed in each case (e.g., whether or not the proof was direct, used 

induction, contraposition).  Conversely, when a student made significant links between the proof 
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approaches or stated how the proof approach could be used in other mathematical situations, the 

attempt was coded as “complete and correct”.  There were 10 “complete and correct” attempts, 

no “partially complete” attempts, and 5 “superficial and incorrect” attempts. 

Several students mentioned this strategy as being particularly helpful for them, both 

during the teaching sessions and in the feedback forms.  This is illustrated in the following 

excerpt from Iteration 1, Session 1, in which a student discusses Proof 2, of the claim that the 

equation x3+5x = 3x2 + sin(x) has only one root.  The proof for this theorem relies on establishing 

that the function f(x) = x3+5x - 3x2- sin(x) is increasing by showing that f’(x) is positive for all 

real-valued x, and hence has only one root by Rolle’s Theorem. When students tried to 

implement the strategy themselves, they attempted to solve the equation by manipulating it 

algebraically; we do not think this approach could be successful.  After reading the proof, some 

students commented on advantages the calculus approach had over their algebraic approach. 

Rahim: “When I first looked at the [theorem], it seemed to me it would just be arithmetic.  I guess 

just at first glance, it seemed like a pretty basic proof where you could pretty much just do it 

[another student says ‘plug and chug’] yeah you could just plug and chug, and you could just put 

steps together.  Now I know what to do next time, I guess, to just think a little bit more outside the 

box.  Because even though it may use more difficult concepts, it’ll become a simpler proof 

altogether because I guess with plugging and chugging with this would be much longer than a 

nine-step proof, and calculus made it a lot easier, even though you wouldn’t automatically think 

to use Rolle’s Theorem.” (italics were our emphasis)  

[from Iteration 1, Session 1, Proof 2] 

In this excerpt, Rahim claimed to have gained an appreciation for the method used in the 

proof after comparing it with his own method. He implied that this was helpful because he could 

now transfer this method into another setting (although confirmatory evidence of Rahim actually 

doing this would be needed to claim that he fully developed this knowledge).   Another student 
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cited the strategy of trying to prove a theorem before reading its proof as being helpful before 

seeing the proof: 

Matt: Describing how you would prove the theorem is useful, for when you would go to 

read the proof, you know what you’re expecting.  

[from Iteration 2, Session 4, post-interview] 

We were surprised that the strategy of comparing proof approaches appeared to be 

effective even when students’ attempts at implementing Strategy 3 were coded as not “complete 

and correct”.  For instance, in Iteration 1, Session 2, students were reading Theorem 4, that 

monotone, bounded sequences are convergent.  Aneta’s initial prediction of the proof approach 

consisted only of the fact that it would “use epsilons”.  The group agreed that this was a 

reasonable approach and did not have anything further to add.  This resulted in a coding of 

“partially correct” for attempting to prove the claim.  After reading the proof, however, Rahim 

realized that the proof had assumed the sequence was increasing, a crucial step for making 

progress in the proof, which he had not anticipated.  The instructor then highlighted this, 

emphasizing that whenever a statement is encountered about monotonic sequences, it may be 

useful to assume, without loss of generality, the sequence is monotonic increasing.   

In sum, describing how one would prove the claim and comparing this approach to the 

one used in the proof were generally effective for students, especially after the first of these was 

modified. However, students had to be informed that they needed to go beyond stating a 

superficial proof method and actually think about how their strategy would be implemented.  

Comparing the proof approach to the one that the student generated created the opportunity to 

learn about when different proof approaches are useful in general.  We hypothesize that this is an 

important way in which this strategy can help students learn proof-based mathematics. 
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Strategy 4: See if the proof can be broken into independent parts. 
Students were encouraged to try to break proofs into independent parts, based on any 

sub-goals or lemmas established in the proof.  Proofs 3, 5, 7, and 10 were considered to not have 

any sub-goals or lemmas, while all other proofs were judged to be able to be partitioned.  An 

implementation of this strategy was coded as “complete and correct” when the student 

appropriately partitioned a proof according to the sub-goals achieved in the proof.  When a 

student inappropriately partitioned a proof or failed to realize that a proof could be partition, the 

implementation was coded as “superficial or incorrect”.  There were no cases of a “partially 

correct” implementation of this strategy.  In total, there were 9 “complete and correct” instances 

and 8 “superficial or incorrect” instances recorded. 

A common problem with students’ implementation of this strategy was their tendency to 

partition the proof according to the quality of the prose, rather than the overarching mathematical 

goals.  For instance, in Iteration 1, Session 3, one student suggested that Proof 6 could be 

partitioned into an “introduction,” “main proof,” and “conclusion”, and another student approved 

of this implementation. The researchers’ intention was the first part of the proof was to establish 

that xy = 2n - 1 and the second was to establish that 1 < x < 2n - 1 and hence 2n - 1 had a factor 

other than 1 and itself. The researcher was surprised by this response and illustrated the intended 

partitioning. 

To avoid the differing interpretations of this strategy by the students and the teacher-

researcher, we attempted to clarify the intended purpose of this strategy by pointing out that the 

parts had to be mathematically independent from one another.  The strategy sheet was modified 

after the second session of the first iteration, and included ways in which proofs could be broken 

into parts: by identifying sub-goals, lemmas, or cases, among others (see Appendix B for the 
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modified strategy sheet).   In Iteration 2, we tried having students implement this strategy at 

different points during proof reading, both before reading the proof line-by-line and after.  

Despite these modifications and repeated feedback, students’ confusion with this strategy 

persisted throughout the study.  One student in Iteration 2 expressed his frustration with this 

strategy, saying “I don't know if I saw the benefit of breaking the proof up into pieces... Because 

it seems like… whenever we wanted to, it didn't meet your criteria.”   

In addition to students’ different interpretations of what was meant by a “part”, students 

sometimes had difficulties recognizing the structure of a proof before reading the proof line-by-

line.  In Iteration 2, Session 4, after reading Theorem 9, that a sequence converges if and only if 

all of its subsequences converge, Matt and Tony predicted that the proof would be comprised of 

two parts, one for each direction of the bi-conditional claim.  However, after receiving the proof, 

the students were silent for half a minute, after which the following exchange occurred: 

Tony: Do you see that it can be broken into parts somewhere? 

Matt: I was looking for it, but I don’t see the two distinctions that we made… 

Tony: That’s exactly what I was looking for. 

Matt: …so he [the proof author] is doing something.  

[from Iteration 2, Session 4, Theorem 9] 

Matt and Tony appeared confused by the apparent lack of distinct parts in the proof, and 

the teacher-researcher intervened, asking why they were confused.  This prompted Tony to 

attempt to explain that they were searching for two directions corresponding to the bi-conditional 

claim.  In the course of explaining this, he re-read the first two lines of the proof and realized that 

this constituted one part, proving the trivial direction that if every subsequence converges, then 

the original sequence converges since it is itself a subsequence.  One explanation for these 
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students’ difficulties is that the students overlooked the first part of the proof due to its short 

length.  It is also apparent that these students initially skimmed the proof, without reading each 

line carefully.  It might be that in certain cases, it can be difficult for students to identify the 

high-level structure of a proof without reading in detail at a line-by-line level.  This hypothesis is 

supported by comments made by the Iteration 2 students during the post-interview: 

Matt: Is it fair to say that we can only break it up by your definition if we've read it line by line, 

do you know what I mean? When I first look at it…I can't necessarily see if there's a sub-goal 

without reading the whole proof. So I don't see how I can [partition the proof] first. 

Interviewer: Do you think it would be more helpful if it were after reading [the proof] line by 

line? 

Matt: I think so, yeah. 

Tony: I mean really it kind of goes, during, really. Because as you're going through--because you 

can't like read it, and then be like, 'oh wait, was there multiple parts here?'  It's really as you're 

reading it, line by line, you find parts in it.  

[from Iteration 2, Session 4, post-interview] 

To summarize, in both iterations, students were able to correctly partition proofs in over 

half the recorded instances, which may have helped them to understand the high-level structure 

of the proof.  However, students had difficulties understanding what should constitute a part, 

even after this strategy was moved earlier among the proof-reading strategies.  Having students 

apply this strategy before reading the proof also may have contributed to students’ difficulties 

identifying the high-level structure of a proof in one instance. 

Strategy 5: Identify what proof methods are being used. 
This strategy was relevant for all of the proofs used in this study.  A “complete and 

correct” implementation of this strategy consisted of correctly identifying the proving technique 
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used in the proof (e.g., contradiction, contraposition, direct proof).  When a student was unable 

to identify the proving technique used in the proof, the implementation was coded as “superficial 

or incorrect”.    Students in both iterations were largely successful in implementing this strategy, 

with 15 “complete and correct” attempts at implementing the strategy and 1 “superficial or 

incorrect” attempt.  There were also 3 instances of students making a “partially correct” 

implementation of this strategy.  This occurred when a student correctly identified the direct 

proof method used in Proof 4, but overlooked the use of cases.  The other instances coded as 

“partially correct” were of students identifying the correct proof technique, but then were unable 

to give a correct justification for how they knew these methods were used, as described next.   

In general, although students were able to determine the method used in a proof, they 

were not always able to immediately cite how they knew these methods were used.  In one 

instance in Iteration 1, Session 3, students claimed that Proof 10 was a direct proof, but were 

initially unable to say why.  One student claimed “they head straight into it,” another stated “they 

don’t use negations, ‘not convergent’”.  A third student pointed out that the final assertion of the 

proof ends with the conclusion of the theorem, a justification that we saw as superior to the 

previous two.  The other students quickly agreed with this reply, suggesting that they saw the 

value of this justification.  Exchanges like these highlight a benefit of the intervention used in 

this study.  The processes used to implement proof-reading strategies are likely to be rapid and 

tacit.  By having students reflect on these processes and make them explicit, others can deepen 

their own understanding of how to better read proofs.  These data suggest that students are 

generally able to identify the proof method used in the proof, and that learning from peers’ 

responses may be valuable for understanding how to know these methods are being used.  
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Strategy 6: Instantiate lines you do not understand with examples. 
This strategy encouraged students to use examples to see why assertions were true when 

it was not immediately obvious why this was so.  There were only five recorded cases of students 

attempting to implement this strategy.  This is fewer than the other strategies, likely because the 

decision of whether to implement this strategy was left up to the students’ discretion. That is, 

students were free to use this strategy if they did not understand a specific line within the proof 

but were not required to do so. An attempt was coded as “complete and correct” when an 

example was used to correctly instantiate an assertion and there was evidence that the students 

better understood this assertion as a result.  Three attempts were coded as “complete and 

correct”.  There were also two instances that earned a “partially complete” code, which are 

described below.  We first describe two of the ”complete and correct” instances here.  In the first 

instance, a student, Tony, in Iteration 2, Session 4 had difficulty understanding the assertion “nk 

≥ k for all k since ank is a subsequence of an” in Proof 9.  After spending some time attempting to 

understand this assertion, he referred back to an example that he had considered before reading 

the proof, of the sequence 1/p and two subsequences, 1/(2n) and 1/(2n+1): 

Tony: How is that true? …We’re looking at nk, nk by that definition, is n1, n2, n3, and so 

on…Right.  And then k is going to be starting at 1, and going on.  But your subsequence…is not 

necessarily 1 and going on…it could be though, which is why it says ‘or equal to’.  So, yeah, like 

in our example.  This is actually what I thought back to [points to sheet where he wrote the 

example]  Because these were the…I should say like a1, a3, a5, and so on [labels these on his 

subsequence 1/(2n+1)] This one was a2, a4, a6, right? So the nth term is going to be—in any 

sequence it’s going to start at 1 or whatever number then just keep going up.  And it doesn’t have 

to go up by ones, it could go up by whatever you define the subsequence as. But it could never be 

less than k, so greater than or equal to has to be true. (italics were our emphasis)  

[from Iteration 2, Session 4, Proof 9] 
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In this excerpt, we see that this strategy prompted Tony to refer to his previously 

constructed example.  This example helped him gain insight into why the statement was true.  In 

another instance, Tony was confused about a claim in the proof of the fact that e is irrational 

(Iteration 2, Session 3, Proof 7).  In this proof, the quantity  

𝑝( 𝑞 − 1 !)−
𝑞!
𝑛!

!

!!!

 

is claimed to be an integer.  After Tony expresses initial confusion about this claim, the 

instructor recommended that he try an example.  Tony chose q = 3, p = 5, and, focusing on the 

summation term of the expression, factored out a “3 factorial” and uttered: 

"Well since it's factorial, that would make sense.  All these would have to cancel out because 

we're talking about 3 times 2 times 1 and so it's always going to have something to cancel out the 

denominator with.  So all these fractions will go away, and it has to be an integer.  That makes 

sense.  So I think in this case that specific example actually really helped, because I could 

actually see the different factors that cancelled out." (italics were our emphasis) 

[from Iteration 2, Session 3, Proof 7] 

In both excerpts, we see Tony developing a better understanding of what each statement 

was asserting as well as developing a justification for why these assertions are true. We further 

note that in each previous excerpt, Tony correctly followed the logic of the proof with a 

particular example, while viewing this example generically (Rowland, 2001).  That is, the 

student mirrored the calculations in the proof with the particular example, and moreover, was 

able to refer to the original proof and compare the work he had done to the assertions made in the 

proof.  This allowed the student to see why a particular statement was true.  In contrast, this 

strategy was not as clearly beneficial when the student did not appear to view the example 

generically.  For example, in the proof that 2n – 1 is prime implies that n is prime (Iteration 1, 
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Session 3, Proof 6), students attempted to see why the quantities x = 2a – 1 and y = 1+2a + 22a + 

… + 2(b-1)a have the product 2ab – 1.  To do so, Aneta set a = 2, and b = 3, and immediately 

computed that x = 3, and y = 21 so that xy = 63.  However, in doing this calculation, Aneta 

skipped the intermediate steps of the calculation followed in the proof.  Had she done so, she 

would have been able to check that the claim was true, and might have gained a better 

understanding of the initial computational steps in this proof.  However, we believe this student 

missed an opportunity to see why the claim was true through cancellation of the various terms. 

From these limited cases, we observe that asking students to apply this strategy might not 

always benefit students. It appears critical that students view their example verifications 

generically. One way to address this problem might be for the teacher-researcher to highlight 

when a student fails to use an example generically, and demonstrate what would be a generic use 

of example in this case.  For instance, in the last excerpt, with a = 2 and b = 3, the teacher-

researcher could have kept x and y in the fully expanded form, and showed exactly how the 

intermediate terms cancel out to arrive at 26-1. We also noted that students did not often 

spontaneously use this strategy, a finding consistent with the survey data of Weber and Mejia-

Ramos (2013a) and also with the behavior of the 28 students observed in the qualitative study of 

Weber (2009). Making students aware of the strategy and having the instructor model the 

strategy was not sufficient motivation for the students in this study to implement this strategy. In 

subsequent iterations of implementing this instruction, giving students cases where they were 

required to use this strategy for steps in proofs that were known to be problematic might provide 

students with the opportunity to see the benefits of applying this strategy, making it more likely 

for them to use the strategy in the future. 
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Other observations about the strategies and instruction 
A complaint that occurred repeatedly throughout the study was that students sometimes 

realized that certain lines in a proof were true, but felt unsatisfied because they felt they would 

not have thought to make such an inference if they were writing the proof. Leron (1983) referred 

to this as proofs “which pull a rabbit out of a hat” in which some new quantity is “magically” 

produced to satisfy some desired properties.  This was especially apparent with in Proof 6, of the 

fact that 2n – 1 is prime implies that n is prime.  This statement is proved using contraposition 

and assumes that n = ab with a,b, both greater than 1.  The proof then defines two numbers, x = 

2a – 1 and y = 1+2a + 22a + … + 2(b-1)a, multiplies these numbers, and checks that their product 

equals 2n – 1.  Several students complained that although they were convinced the calculation 

was correct, they did not see how the author of the proof thought to define these quantities: 

Rahim: I see how [xy = 2n – 1] is a true statement, but I still don’t see how you derive x and y. 

[Iteration 1, Session 3, Proof 6] 

Matt: The whole idea of bringing up this y, it does seem to come out of nowhere.  It’s one of 

those things that’s like they make it so that it works…I get it logically, I understand what he’s 

trying to do, but how they came up with it…I would like to see his scratch work, his idea. (italics 

were our emphasis) [Iteration 2, Session 3, Proof 6] 

In a post-interview with the two students from Iteration 2, they elaborated on this aspect 

of proofs as typical to their experience with proof-based mathematics: 

Tony: Whenever you’re reading proofs, and stuff like that, whenever they just say that line, like 

let this be something really specific, and it’s just like, OK… (italics were Tony’s emphasis)  

Matt: …all right. [laughing]…when they present the non-obvious so obviously, it’s just like 

[laughing, shaking his head and shrugging] it makes you feel less about yourself mathematically.  

[from Iteration 2, Session 4, post-interview] 
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In the previous excerpts, students expressed confusion and frustration by what they 

perceived to be a mathematical sleight of hand.  This phenomenon is related to our goals for how 

students can understand proofs, from the proof comprehension model of Mejia-Ramos et al.  

Specifically, it represents an inability to see how the method of the proof could transfer to 

another context. This proof comprehension model highlighted applying a holistic and 

presumably transparent method to another context, but this model does not include applying 

specific heuristics in other contexts.  Our strategies did not seem to help students overcome their 

perceived shortcomings in this regard. This may be an area where an instructor may need to help 

students cope by explaining the reasoning used to generate the difficult step. 

As described in the Procedure, our instructional method was based on Palincsar and 

Brown’s (1984) reciprocal teaching studies.  An integral part of this method, as we interpreted it, 

is for the instructor to provide scaffolding and regular feedback, particularly as students are 

initially learning the strategies.  However, this appeared to have a negative effect on student 

engagement.  As the instructor assumed the responsibility for evaluating students’ responses, 

students took a passive role.  In fact, in the first two sessions of Iteration 1, there was not a single 

instance of students providing any feedback other than passive confirmation to a students’ use of 

these strategies.  Instead, students would simply repeat what others had already said or say 

nothing meaningful at all (e.g., “sounds good”).  We therefore conjectured that students had 

assumed that the instructor would continue to evaluate their use of strategies, and so did not feel 

the need to critically evaluate their peers’ responses.  We decided to adopt an instructional design 

principle observed from a different teaching study that we conducted (Weber et al., 2010): we 

hypothesized that this situation could be ameliorated by having students form smaller groups 

(two to three students each) in which they would be responsible for discussing how they would 
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implement each of the strategies.  Students were told that they needed to reach agreement in their 

groups before presenting their ideas to the class. 

After these changes to the protocol were made, there were instances of students 

evaluating one another’s strategy use.  For instance, in Iteration 1, Session 3, in thinking how to 

prove that 2n – 1 is prime implies that n is prime in Proof 6, Aneta suggested using the 

Fundamental Theorem of Arithmetic.  Another student suggested that induction could be used 

instead.  Aneta argued against this saying, “I don’t think induction will work because if you have 

n, then n+1 wouldn’t be prime.  Unless it’s two.”   

Discussion: Lessons learned from these two iterations 

Lessons learned about the proof reading strategies 
 In this section, we discuss each of the strategies and what we learned from the two 

iterations of the study. 

 Strategy 1: We found that asking students to “know the definition of the terms of the 

theorem” was not helpful for students at the start of Iteration 1; the students simply would 

identify the terms but not state their definitions, perhaps because they felt they already knew the 

definitions. Asking students to specifically state the definition and to look up definitions they 

may have forgotten led students to use the strategy more productively. In Iteration 2, we saw that 

this not only helped students understand some proofs, but it also called their attention about an 

important epistemological aspect of proof: proofs about concepts in mathematics should be based 

on the definitions of those concepts. In Iteration 2, we discovered that one limitation of this 

strategy occurs in the case where there are multiple common characterizations of the concept, as 

this strategy would not prescribe to students which characterization that they should consider. 
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 Strategy 2: The data in both iterations support the claim that by instantiating a theorem 

statement with a particular example can help students understand the proofs that they read. As 

predicted, this helped students understand why the theorem statement was true and how the proof 

might proceed. An unanticipated benefit that we observed in Iteration 2 was that when a student 

instantiated a theorem with an example, a classmate, the teacher-researcher, or the student herself 

sometimes realized that they had a misconception about what the theorem was asserting. This 

realization provided the opportunity to take actions to remedy this situation. 

 Strategy 3: In Iteration 1, we found that simply asking students how to prove the theorem 

led to superficial responses, such as “use epsilons”, that would not aid their understanding of the 

proof. We presented students with more detailed instructions, such as stating how the idea would 

be carried out and what difficulties may arise. These instructions led students to avoid this 

shallow implementation of the strategy. When students implemented the strategy successfully, 

some cited that it was beneficial to them because it helped them know what to expect when 

reading the proof. 

 Strategy 4: We did not find that asking students to break the proof into independent parts 

was helpful for students to build an understanding of the proof. Even after being precise about 

how this strategy could be implemented, students still complained that they had difficulty 

implementing it and that it was not helpful. When students were asked to implement this strategy 

before reading it at a line-by-line level, they found the task difficult, saying it was tough to know 

when one section of a proof ended and another began without reading it closely first. It seemed 

as if students could only implement this strategy as a result of understanding the proof, making it 

problematic to use it as a strategy as a means to understand the proof.  
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 We were surprised by this finding, given that we observed successful students using this 

strategy effectively in our earlier research (Weber, in press). Further, mathematicians claim both 

to use this strategy (Mejia-Ramos & Weber, 2014; Weber & Mejia-Ramos, 2011) and to desire 

that their students use this strategy as well (Weber, in press). One possibility is that being able to 

break the proof into independent parts represents a deep understanding of the proof; that is, this 

is more an indicator of understanding rather than the means to achieve it. Inglis and Alcock 

(2012, 2013) contended that mathematicians may allege to skim proofs for comprehension, but 

their actual behavior when reading a proof is not consistent with this claim. (Weber and Mejia-

Ramos (2013b) objected to the interpretation of their data). The data in this study are consistent 

with the claim of Inglis and Alcock. 

 Another possibility is that our atypical proof presentation, where the proof did not appear 

in paragraph form but as a sequence numbered lines, made the use of this strategy difficult. Our 

proofs did not contain any advanced organizers, paragraph breaks, or indentations.  Konior 

(1993) suggested that such “delimitators” in proofs may be helpful for readers’ understanding. 

 Strategy 5: Students were generally successful at identifying the proof methods used, 

although in Iteration 1, students sometimes did not articulate how they made this identification. 

We found that helping students know that the proof method was determined by the assumptions 

and conclusions of the argument led to more articulate descriptions of how the strategy was 

implemented. 

 Strategy 6: We encouraged students to instantiate a line of a proof that they did not 

understand with a specific example. This was an optional strategy and we found that students 

usually did not use the strategy. It was only used five times across the two iterations of the study. 
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From studying the implementation of this strategy in both iterations, when the strategy was 

implemented, it was successful for students if they treated the example generically but not when 

they focused on calculation-based aspect of the example. This is consistent with a broader point 

that examples may have more value for mathematicians than for students since mathematicians 

use the examples in more sophisticated and productive ways (e.g., Iannone et al, 2011). 

 Strategy 7: The data from both iterations confirmed that when students compared the 

proof that they read to their own approach proving the theorem, they felt that this helped them 

see situations that it might be applicable elsewhere. We were surprised to find that students could 

reap benefits from the strategy even if they failed to articulate how they would try to prove the 

theorem before reading the proof. 

Themes across the strategies 

 Specific prescriptive guidance helped students implement them more effectively.   This 

finding is consistent with the teaching of heuristics in mathematical problem solving. In 

summarizing the research literature at the time, Schoenfeld (1985) observed that describing and 

modeling heuristics for students is not sufficient for students to use these heuristics effectively. 

One needed to be clearer at a prescriptive level as to how the heuristics were implemented. We 

found that when we offered this prescriptive guidance for several of the strategies, such as trying 

to prove a theorem before reading its proof and stating the definition of the terms in the theorem 

statement, students’ rate of success in implementing the strategy successfully improved. 

 These strategies were beneficial to students. In the previous section, we illustrated how, 

with the exception of Strategy 4, there were instances where implementing the strategies 

appeared to help students improve their understanding of the proofs that they read. For instance, 
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illustrating a theorem with an example before reading its proof helped students understand what 

the theorem was asserting and how the proof might proceed. Comparing the methods of a proof 

with one’s own approach helped students expand their arsenal of proving techniques. When 

students stated the definitions of terms before reading its proof, some reported having a greater 

appreciation of the role that definitions play in the proving process and this provided the 

opportunity to identify gaps in students’ knowledge. At this stage, this evidence is only 

suggestive as students were not systematically given post-tests on their understanding of proof. 

Further research can corroborate these findings by demonstrating that students who are taught 

these strategies subsequently perform better on proof comprehension tests.  

 There were impediments to proof comprehension that could not be addressed by these 

strategies. We designed these strategies so that students could increase their comprehension of a 

proof that they read independently. Our goal was to provide students with the means to 

autonomously mine the insights out of proofs. There were two aspects of the proof that students 

were not able to understand using our strategies—choosing the right definition to base a proof 

upon when multiple definitions were available and understanding the rationale for unmotivated 

steps in the proof. We wonder if there was anything students could have done in these situations. 

It might be the case that the presenter of the proof might have to explain these aspects to the 

student-readers. 

 Asking students to implement and discuss the strategy in small groups led to more student 

involvement in the evaluation of the strategy. At the start of Iteration 1, although we asked 

students to evaluate others’ implementation of the strategies, the students tended to be passive as 

they did so. They simply agreed that the implementation was fine. To rectify this, we had 

students work in small groups, requiring that they reach a consensus before sharing their 
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implementation in the class. The responsibility of forming a consensus led students to be much 

more attentive and evaluative of their classmates’ work. 

Limitations of our study and future research 
In this study, we asked students to apply our proof reading strategies to proofs from 

calculus, real analysis, and number theory. Our primary reason for this decision was we felt 

students would have an adequate knowledge base to understand these proofs; the number theory 

proofs only relied on basic number theoretic facts that was covered in the transition-to-proof 

course that these students had completed and the calculus and real analysis concepts were 

covered in the calculus sequence and real analysis course these students had completed. It is 

possible that the proof reading strategies that we described worked well for proofs in these 

specific domains, but might not be beneficial in other domains such as topology, set theory, or 

group theory. For instance, the example generation strategies might be difficult to apply for a 

beginning group theory student who may not yet have a rich collection of groups that he or she 

feels comfortable exploring.  

We chose our proofs to pertain to content with which students are familiar. Of course, 

when students read proofs in their advanced mathematics courses, this will often not be the case. 

Students will have to simultaneously contend with understanding a proof as well as 

understanding the concepts within that proof. Indeed, a professor may hope that students come to 

understand a concept by reading a proof about that concept. As our study deliberately avoided 

such proofs, we cannot claim that our strategies are helpful in these situations. It is possible that 

our strategies might not be helpful or a different set of strategies is needed. 

Our evidence for a strategy’s effectiveness consisted of qualitative illustrations of 

students gaining an insight by applying a strategy and their personal reflections on using a 
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strategy. However, we acknowledge this is merely suggestive evidence that learning has 

occurred. For instance, it is possible that the gains that the participant made were fleeting or that 

they would not be able to leverage these gains to answer questions on a proof comprehension 

test. Further studies, where an actual post-test was given, would be needed to address this 

limitation in the study. 

Relationship to other literature 
 We have discussed the results primarily in relation to the papers we have written 

regarding the strategies.  There have also been other studies examining the strategies that 

students use when attempting to interact with mathematical texts. In the remainder of the paper, 

we compare our strategies and results with these other studies.   

 Shepherd, Selden and Selden (2012) asked 11 students to read excerpts from pre-calculus 

and calculus textbooks, and counted students’ use of fifteen “constructively responsive reading” 

strategies.  These strategies were adopted from the reading comprehension literature and most 

were more general in nature than ours, including “use strategies to remember text,” and “relate 

text content to prior knowledge”.  Interestingly, Shepherd et al.’s study suggested that students 

were aware of, but not bothered by, their confusions or inadequate prior knowledge when 

reading the text.  This is consistent with our findings that suggested that students were aware of 

their imperfect understanding of concepts (such as the mathematical constant e) but avoided 

addressing them because they did not think it was important to do so.  On the other hand, several 

students in our study also voiced concerns when they were able to validate a series of steps, but 

unable to extract a deeper understanding of the method behind these steps.  The dissatisfaction 

that these students expressed about their own understanding suggests a level of sophistication 

and curiosity in thinking that seems runs contrary to Shepherd et al.’s students.  One explanation 



Teaching proof comprehension 46 

 

might be that this level of sophistication and curiosity was absent in Shepherd et al.’s study 

because students were first-year mathematics students in pre-calculus and calculus.  Perhaps 

experience with higher-level mathematics, as well as students’ motivation and goals for 

continuing to enroll in mathematics courses, are relevant factors in students’ curiosity and self-

reflection. 

 Several of our strategies, such as identifying proof frameworks, were specific to proof 

reading and all of our strategies were geared toward reading mathematical arguments. In this 

sense, it is not surprising that our strategies were more specifically geared toward mathematics 

than the general comprehension strategies explored by Shepherd et al.  

 Our strategies can also be compared with those suggested in the literature for proof 

validation. We first note that it would not be surprising if the strategies for validation differed 

from those of comprehension. As Rav (1999) noted, how one reads a proof depends on what one 

hopes to get out of it; we have observed that mathematicians use different strategies for 

comprehension and refereeing (Mejia-Ramos & Weber, 2014).  Inferring warrants has been 

suggested to be an important part of validating proofs (Weber & Alcock, 2005).  While we did 

not directly instruct students to do this, students were told to instantiate steps of the proof they 

did not understand with specific examples (Strategy 6).  As discussed above, we believe this can 

be helpful for students to understand how steps in the proof follow from one another, but only 

when those steps are followed through completely with the example, as far as the reader finds 

necessary.  Selden and Selden (1995) recommended that students attend to the proof framework 

of a proof while attempting to validate proofs.  There were two strategies used in our study that 

we believe could be beneficial to students’ comprehensions of proof frameworks:  attempting to 

prove the theorem (Strategy 3) and identifying the proof technique (Strategy 5).  In these ways, 
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our strategies might be suitable for improving students’ ability to validate proofs.  Furthermore, 

Inglis and Alcock (2012) and Selden and Selden (2003) argued that students focus too much on 

local aspects of the proof, and failed to attend to global aspects when validating proofs.  Some of 

our strategies, such as partitioning the proof (Strategy 4) and comparing the proof approach to 

the reader’s own approach (Strategy 7) could be helpful for encouraging students to understand 

the global structure of the proof.  
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Appendix A. Original proof reading strategies 
What do we do before we read the proof? 

• Know the definition of the terms of the theorem 
• Work through some examples to make sure we understand the statement 
• Try to rephrase the theorem in our own words 
• How would you try to prove the theorem? 
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What do we do while we are reading the proof? 

• Does the proof have a framework that we can recognize (such as direct 
proof,  proof by cases, proof by contradiction, proof by contrapositive, 
mathematical induction, constructive proof, uniqueness proof)? 

• Do we understand each step in the proof?  Could we illustrate the step with 
an example? 

• How does each step follow as a consequence of previous steps? 

 

What do we do after we read a proof? 

• Do we see how each of the hypotheses was needed and used in the proof? 
• How can the proof be broken into parts? 
• How did the approach shown in the proof differ from the way you would 

have chosen? 
• Can we explain the proof to someone else? 
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Appendix B. Modified proof reading strategies. 
Before reading the proof: 

1. Make sure you understand the definitions of all the terms 

a. What mathematical concepts are involved in the theorem statement? 

b. What is the definition of each concept? 

c. If you do not know a definition, use a resource to find it. In this study, ask your 

classmates or the instructor. In other settings, you can consult a teacher, use your 

textbook, or search the internet. 

 

2. Illustrate the theorem with an example 

a. Choose an appropriate example. The example should satisfy the hypothesis, not 

be too complicated, but not be too trivial. 

b. Check to see if the theorem is true for this example. 

c. If not, consult a resource (a classmate, a teacher) to see if you really understand 

what the theorem is saying. 

 

3. Rephrase the theorem in your own words 

 

4. Describe how you would try to prove the theorem 

a. Choose a proof approach that you think might work 

b. Describe what you think it might look like. What would you assume and what 

would you try to show? 

c. What difficulties would you expect if you tried your approach? 

 

While reading the proof: 

1. See if the proof can be broken into parts. 

a. See if the proof has lemmas or sub-goals. If it does, treat the proofs of the lemmas 

or sub-goals as separate proofs. 

b. See if the proof is a proof by cases. If it is, you can treat the proof of each case as 

a separate proof. (But be sure the proof by cases is done correctly, see step 2). 
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c. See if the proof requires you to prove two (or more) separate things. An if-and-

only-if statement requires proving things in both directions. Proving s is a least 

upper bound often involves proving s is an upper bound and proving that there are 

no upper bounds smaller than s. 

d. After reading the proof: What did each section of the proof accomplish? 

 

2. Identify what proof methods—direct proof, proof by contradiction, proof by 

contraposition, proof by induction, or proof by cases—is being used. 

a. What assumptions does the proof (or sub-proof) start with? 

b. How do these assumptions relate to a proof method? (If the proof begins by 

assuming the conclusion is false, you are using a proof by contradiction or a 

proof by contraposition). 

c. Check the conclusion of the proof (or sub-proof). Use these to confirm the 

proof method. 

 

3. Do you understand each step in the proof? 

a. Are there any terms in the proof that you do not understand? If so, consult a 

source (classmate, textbook, teacher) to find out what these terms mean. 

b. How does the new statement follow from previous statements? 

c. If you are confused by a statement, try to see why it is true for a particular 

example. 

After reading the proof: 
 

1. How did the approach you chose differ from the proof that you read? 

a. Were there any differences that you observed? 

b. What benefit did you think the author’s approach to their proof had that yours did 

not? Were there any difficulties the author avoided that your approach did not? 

c. For what other types of proofs might the method of this proof be applicable? 
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Appendix C. Proofs used in Study 2 

Proof 1 
Theorem: A positive integer, 𝑁, is a square if and only if the number of divisors of 𝑁 is an 

odd number. 
Proof: 

1. Suppose that there are an odd number of divisors of 𝑁. 
 

2. For each divisor, 𝑑, of 𝑁, 𝑁 𝑑 is also a divisor of 𝑁. 
 

3. Thus, there are an even number of divisors of 𝑁 unless there is some 𝑑 with 𝑑 = 𝑁 𝑑. 
 

4. In this case 𝑑! = 𝑁 so 𝑁 is a perfect square. 
 

5. Now suppose 𝑁 is a perfect square: 𝑁 = 𝑟!. 
 

6. If 𝑑 is a divisor of 𝑁, then 𝑁 𝑑 is also a divisor of 𝑁. 
 

7. Moreover, if 𝑑 < 𝑟, then 𝑁 𝑑 > 𝑟. 
 

8. Also, if 𝑑 > 𝑟, then 𝑁 𝑑 < 𝑟. 
 

9. So the divisors of 𝑁 are {1 < 𝑑! < 𝑑! < ⋯ < 𝑟 < ⋯ < 𝑁 𝑑! < 𝑁 𝑑! < 𝑁} 
 

10.  Hence, 𝑁 has an odd number of divisors. 

 

Proof 2 
Theorem: The only solution to the equation 𝑥! + 5𝑥 = 3𝑥! + 𝑠𝑖𝑛 𝑥  is  𝑥 = 0. 

Proof: 

1. Check that 𝑥 = 0 is a solution to the equation: 0 ! + 5 0 = 3 0 ! + sin 0 . 
 

2. We need to show that there are no other solutions. 
 

3. Let  𝑓 𝑥 = 𝑥! − 3𝑥! + 5𝑥 − sin 𝑥. 
 

4. Roots of 𝑓 𝑥 = 0 precisely correspond to solutions of   𝑥! + 5𝑥 = 3𝑥! + sin 𝑥. 
 

5. Suppose 𝑓 𝑥 = 0 has a nonzero root; that is 𝑠 ≠ 0 and  𝑓 𝑠 = 0. 
 

6. Then 
𝑓! 𝑥 = 3𝑥! − 6𝑥 + 5− cos 𝑥 = 3 𝑥! − 2𝑥 + 1 + 2− cos 𝑥 = 3 𝑥 − 1 ! + 2− cos 𝑥. 
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7. Since 3 𝑥 − 1 ! ≥ 0 and 2− cos 𝑥 > 0 for all real numbers x, 𝑓! 𝑥 > 0 for all real 
numbers x. 
 

8. Since 𝑓 0 = 𝑓 𝑠 = 0 and, 𝑠 ≠ 0 by Rolle’s theorem, there exists c between 0 and s such 
that  𝑓! 𝑐 = 0. 
 

9. However, this is a contradiction because 𝑓! 𝑥 > 0 for all x. 

 

Proof 3 
Theorem: There is a real number whose fourth power is exactly one larger than itself. 

Proof: 

1. Let 𝑓 𝑥 = 𝑥! − 𝑥 − 1. 
 

2. 𝑓 1 = −1      𝑎𝑛𝑑      𝑓 2 = 13. 
 

3. By the Intermediate Value Theorem, there must be some number 𝑐 such that 
1 < 𝑐 < 2      𝑎𝑛𝑑      𝑓 𝑐 = 0. 
 

4. 𝑐 has the desired property. 

 

Proof 4 
Theorem: A bounded monotone sequence is convergent. 

Proof: 

1. Let 𝑎!
∞

𝑛 = 1 be a bounded monotone sequence. 
 

2. Assume the sequence is increasing. 
 

3. Let 𝑠 = 𝑠𝑢𝑝 𝑎!:𝑛 = 1,2,…  
 

4. It will be shown that 𝑎!
∞

𝑛 = 1 converges to 𝑠. 
 

5. Let 𝜀 > 0.  Since 𝑠 is the least upper bound of  𝑎!
∞

𝑛 = 1, 𝑠 − 𝜀 is not an upper bound. 
 

6. Hence there is an 𝑛! such that 𝑠 − 𝜀 < 𝑎!!. 
 

7. For all 𝑛 > 𝑛!, 𝑠 − 𝜀 < 𝑎!! ≤ 𝑎! ≤ 𝑠. 
 

8. Hence 𝑎!
∞

𝑛 = 1 converges to 𝑠. 
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9. For the case in which 𝑎!
∞

𝑛 = 1 is decreasing, let 𝑠 = 𝑖𝑛𝑓 𝑎!:𝑛 = 1,2,…  
 

10. The proof in this case is similar to the above. 

 

Proof 5 
Theorem: If n is an integer and n ≥ 2, then n3 - n is divisible by 6. 

Proof: 

1. Let n be an integer such that n ≥ 2. 

2. Then n3 - n = n(n2 - 1) = n(n + 1)(n - 1) 

3. n3 - n is therefore the product of three consecutive positive integers. 

4. Therefore, 3 must divide n, n + 1, or n - 1. 

5. Also, 2 must divide n, n + 1, or n - 1. 

6. Hence 2 divides a factor of n3 - n and 3 divides a factor of n3 - n. 

7. Therefore, 6 divides n3 - n. 

Proof 6 
Theorem: If n≥2 and 2n-1 is a prime number, then n is prime. 

Proof: 

1. We prove the contrapositive. 

2. Suppose n ≥ 2 is not prime. 

3. Then n = ab where a and b are both greater than 1. 

4. Let x = 2a - 1 and y = (1 + 2a + 22a + … + 2(b-1)a). 

5. Then xy = (2a - 1)(1 + 2a + 22a + … + 2(b-1)a) 

6. = 2a(1 + 2a + 22a + … + 2(b-1)a) - (1 + 2a + 22a + … + 2(b-1)a) 

7. = (2a + 22a + 23a + … + 2ba) - (1 + 2a + 22a + … + 2(b-1)a) = 2ab - 1 = 2n - 1. 

8. Since a > 1, x = 2a - 1 > 1. 

9. Since b > 1, a < n. 
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10. Hence x = 2a - 1 < 2n - 1. 

11. Therefore 2n - 1 can be written as the product of two positive integers, both greater 

than one. 

 

Proof 7 
Theorem: 𝑒 is irrational. 

Proof: 

1. Suppose that 𝑒 is a rational number: 𝑒 = !
!
. 

2. We know that 𝑒 = !
!!
+ !

!!
+ !

!!
+⋯ > 2. 

3. We also know that 𝑒 = !
!!
+ !

!!
+ !

!!
+ !

!!
+ !

!!
+⋯ < 1+ 1+ !

!
+ !

!!
+ !

!!
+⋯ = 3 

4. Since 𝑒 is not a whole number, 𝑞 > 1. 
5. Then !

!
= 𝑒 = !

!!
!
!!! = !

!!
!
!!! + !

!!
!
!!!!!  

6. Rearranging and multiplying by 𝑞!, we obtain: 

𝑝 𝑞 − 1 !−
𝑞!
𝑛! =

𝑞!
𝑛!

!

!!!!!

!

!!!

 

7. The left-hand side of the equation above is an integer. 
8. For the right hand side of the equation, 

𝑞!
𝑛!

!

!!!!!

=
1

𝑞 + 1+
1

(𝑞 + 1)(𝑞 + 2)+
1

(𝑞 + 1)(𝑞 + 2)(𝑞 + 3)+⋯  

<
1

𝑞 + 1+
1

𝑞 + 1 ! +
1

𝑞 + 1 ! +⋯ =
1 𝑞 + 1

1− 1 𝑞 + 1 =
1
𝑞 < 1 

9. Thus the right-hand side of the equation is a positive integer less than one, a 
contradiction. 

10. Hence, 𝑒 is irrational. 

Proof 8 
Theorem: Consider the sequence defined as follows: 

𝑠! = 2, 𝑠!!! = 2+ 𝑠!,                    𝑓𝑜𝑟      𝑛 = 1,2,3,… 

Show that the sequence 𝑠!
∞

𝑛 = 1 is convergent. 

Proof: 

1. We will show that 𝑠!  is a bounded, increasing sequence.  Hence 𝑠!  is convergent. 
 

2. We will use proof by induction to show that  𝑠!  is an increasing sequence. 
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3. 𝑠! = 2+ 2 > 2  so  𝑠! < 𝑠! 
 

4. 𝑠!!! = 2+ 𝑠!!! > 2+ 𝑠! = 𝑠!!! so 𝑠!  is an increasing sequence. 
 

5. We will use proof by induction to show that  𝑠! < 2. 
 

6. 𝑠! < 2. 
 

7. 𝑠!!! = 2+ 𝑠! < 2+ 2 = 2   hence  𝑠!   is bounded. 
 

8. Since a bounded, increasing sequence is convergent, 𝑠!   is convergent. 

Proof 9 
Theorem: A sequence 𝑎! !!!

!  converges iff each of its subsequences converges. 

Proof: 

1. Suppose that every subsequence of 𝑎! !!!
!  converges. 

2. Since 𝑎! !!!
!  is a subsequence of itself, 𝑎! !!!

!  converges. 

3. Suppose that 𝑎! !!!
!  converges to L. 

4. Let 𝑎!! !!!

!
 be a subsequence. 

5. Let 𝜀 > 0. 

6. Since  𝑎! !!!
!  converges to L, there exists a positive integer N such that, for n ≥ N, |an 

- L| < 𝜀. 

7. Since 𝑎!! !!!

!
 is a subsequence of the given sequence, nk ≥ k for all positive integers 

k. 

8. Thus if k ≥ N, nk ≥ N. 

9. Hence, |𝑎!! - L| < 𝜀. 

10. So 𝑎!! !!!

!
 is convergent. 
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Proof 10 
 

Theorem: If 𝑎! !!!
!  converges to 0 and 𝑏! !!!

!  is bounded, then 𝑎!𝑏! !!!
!  converges 

to 0. 

Proof: 

1. Let M be a positive number such that |bn| ≤ M for all n. 

2. Choose 𝜀 > 0. 

3. Then let 𝜀! =    !
!
> 0. 

4. There is a positive integer N such that n ≥ N implies |an| = |an - 0| < 𝜀!. 

5. Then |anbn - 0| = |anbn| =  |an||bn| ≤  |an|M < 𝜀!M = 𝜀. 

6. Thus 𝑎!𝑏! !!!
!  converges to 0. 

 

Proof 11 
Definition: A Primitive Pythagorean triple is a triple of positive integers (a,b,c) such that: 
1. 𝑎! + 𝑏! = 𝑐! and 
2. a, b, and c are co-prime.  (That is, there is no common factor of a, b, and c other than 1.) 

Theorem: If (𝑎, 𝑏, 𝑐) is a primitive Pythagorean triple, then 𝑐 is odd. 
 

Lemma 1: For any natural number 𝑥, 𝑥! ≡ 1(𝑚𝑜𝑑  4) if 𝑥 is odd and 𝑥! ≡ 0(𝑚𝑜𝑑  4) if 𝑥 is 
even. 

Proof of Lemma 1: 

1. Suppose 𝑥 is odd.  Then 𝑥 = 2𝑘 + 1 for some integer 𝑘.  Then 
𝑥! = 2𝑘 + 1 ! = 4𝑘! + 4𝑘 + 1 = 4 𝑘! + 𝑘 + 1  

 
2. So 𝑥! leaves a remainder of 1 when divided by 4. 

 
3. Suppose 𝑥 is even.  Then 𝑥 = 2𝑘 for some integer 𝑘. Then 

𝑥! = 2𝑘 ! = 4𝑘!  
 

4. So 𝑥! is divisible by 4 and 𝑥! ≡ 0  (𝑚𝑜𝑑  4). 
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Lemma 2: For any natural number 𝑥, If 𝑥! is even, then 𝑥 is even. 
Proof of Lemma 2: 

1. We prove the contrapositive. 
 

2. Suppose that 𝑥 is odd. 
 

3. Then by Lemma 1, 𝑥! leaves remainder 1 mod 4. 
 

4. Hence 𝑥! is odd, as desired. 

Proof of Theorem: 

1. Let (a,b,c) be a Primitive Pythagorean triple. 
 

2. There are three cases.  Either a and b are both even, or a and b are both odd, or a is even 
and b is odd (or vice versa). 
 

3. Case 1: Assume a and b are both even.  Since a and b are even, 𝑎! and 𝑏! are even.  
Hence 𝑎! + 𝑏! = 𝑐! is even. 
 

4. By Lemma 2, since 𝑐! is even, c must be even. 
 

5. Hence a, b, and c are all even and have a common factor of 2. 
 

6. This contradicts the fact that (𝑎, 𝑏, 𝑐) is a Primitive Pythagorean triple. 
 

7. Thus a and b cannot both be even. 
 

8. Case 2: Assume a and b are both odd.  By Lemma 1, since a and b are odd, 
𝑎! ≡ 1  (𝑚𝑜𝑑  4) and 𝑏! ≡ 1  (𝑚𝑜𝑑  4).  So 𝑎! + 𝑏! = 𝑐! ≡ 2  (𝑚𝑜𝑑  4). 
 

9. By Lemma 1, we know that 𝑐! cannot be congruent to 2  (𝑚𝑜𝑑  4). 
 

10. Thus a and b cannot both be odd. 
 

11. Case 3: Assume, without loss of generality, that a is odd and b is even. 
 

12. Then 𝑎! is odd and 𝑏! is even.  Hence 𝑎! + 𝑏! = 𝑐! is odd. 
 

13. Since 𝑐! is odd, c is odd. 
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Appendix D. Excerpt of teacher-researcher intervention: Iteration 1, Session 
2, Proof 4 

[Students are handed a statement of Theorem 4, that a bounded, monotone sequence is 

convergent] 

Interviewer: Bob, can you identify the definitions and key terms of the theorem? 

Bob: Uh… bounded, monotone sequence, and convergent? 

Interviewer: Does anyone know what it means for a sequence to be bounded? 

Aneta: Uh, there is a small m and big M such that for all x_n in the sequence, m <= x_n <= M. 

Interviewer: OK, does anyone have anything to add to that? [silence] Yes, that’s right!  All right, 

Rahim, can you tell us what monotone means? 

Rahim: …No. 

Interviewer: OK, anybody? 

Kirk: That means it’s only entirely increasing [gestures with his hands to show the graph of an 

increasing function] or decreasing. 

Interviewer: OK, does everybody agree? [students are nodding heads] Yes, I would agree with 

that, but we have to be a little careful.  Monotone means, if it’s monotone increasing, it’s either 

staying the same or going up [gestures with his hands to show a function which is constant on an 

interval and then increasing].  So that’s a little tweak about “strictly” monotone increasing.  But 

once it starts going up, you know it’s going to be going up and never going down. 

 

 

 

 


