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Introduction 

 
In this chapter we focus on the concept of proof, which is important for students’ 

mathematical education but also hard for teachers to teach and difficult for students to learn. In 

reviewing the research in this area, our thesis in the chapter can be outlined as follows. Research 

thus far has produced a good empirical basis and a good number of theoretical constructs about 

how students at different levels understand, typically misunderstand, proof.1 Yet, despite 

progress in this area, proof currently has a marginal place in ordinary mathematics classrooms. 

More research is needed on how to elevate the role of proof in ordinary classrooms and how to 

support teachers’ work in enhancing students’ understandings about proof. We thus argue that 

more intervention-oriented studies in the area of proof are sorely needed. Intervention-oriented 

studies should benefit from and capitalize on the substantial theoretical and empirical foundation 

that is already available. 

In the rest of this section, we briefly discuss the importance of proof in mathematics 

education and we consider the meaning of “proof” in general and in this chapter in particular.  

We finish with a description of this chapter’s scope and organization. 

The Importance of Proof in Mathematics Education 

The concept of proof has received attention by mathematics education researchers for 

many decades (e.g., Fawcett, 1938; Kilpatrick, 1922), but more explicitly so in the past few 

decades. Indeed, there has been an upsurge of publications on various aspects of proof 
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(mathematical, social, cognitive, didactical, philosophical, etc.) in all mathematics education 

research journals and in books or specialized volumes (e.g., Hanna & de Villiers, 2012; Hanna, 

Jahnke, & Pulte, 2010; Reid & Knipping, 2010; Stylianou, Blanton, & Knuth, 2010).  

While there is some debate on the place and nature of proof within the field of 

mathematics (e.g., Lakatos, 1976), there is no disagreement that proof is indispensable to the 

work of mathematicians and to their efforts to deepen mathematical understanding (e.g., Kitcher, 

1984). There is also wide recognition that proof should play an important role in all students’ 

mathematical education (e.g., Hanna & Jahnke, 1996; Mariotti, 2006), even in elementary school 

(e.g., Ball & Bass, 2003; Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002; NCTM, 2000; 

Stylianides, 2007b; Yackel & Hanna, 2003). This is not to suggest that instruction should treat 

students as “little mathematicians” (Hiebert et al., 1996). Rather, the idea is that, similarly to its 

role in the field of mathematics, proof is (or should be) indispensable to meaningful engagement 

with mathematics in school as well (e.g., Hanna, 1990; Hersh, 1993; Mason, 1982). 

For example, proof can allow even young children to explore or debate the truth of 

mathematical assertions based on the logical structure of the mathematical system rather than by 

appeal to the authority of the teacher or the textbook (e.g., Ball & Bass, 2000, 2003; Lampert, 

2001; Reid, 2002; Zack, 1997). Proof can also serve a broad range of functions including the 

following: verification or falsification (i.e., establishing the truth or falsity of an assertion), 

explanation (i.e., offering insight into why an assertion is true or false), discovery (i.e., inventing 

new results), illustrating new methods of deduction, justifying the use of a definition or an axiom 

system, and communication (i.e., conveying results) (e.g., Bell, 1976; de Villiers, 1990, 1999; 

Larsen & Zandieh, 2008; Hanna & Barbreau, 2008; Stylianides, 2008a; Weber, 2002, 2010b). 
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It is encouraging to see that curriculum frameworks in different countries are now calling 

for an important role of proof in the mathematical experiences of all students and as early as the 

elementary school. Examples can be found in the Common Core State Standards (NGA & 

CCSSO, 2010) in the United States and in the latest National Mathematics Curriculum in 

England (Department for Education, 2013). In particular, one of the three core aims that the 

National Mathematics Curriculum in England sets for students of all ages relates to proof: 

“[Students should] reason mathematically by following a line of enquiry, conjecturing 

relationships and generalisations, and developing an argument, justification or proof using 

mathematical language” (Department for Education, 2013, p. 3).   

This statement situates students’ engagement with proof in a broader set of activities, 

such as generalizing and conjecturing, both of which are frequently based on work with specific 

cases or examples. These activities are critically important as they can support and give meaning 

to students’ engagement with proof (e.g., Bartolini Bussi, 2000; Boero, Garuti, & Mariotti, 1996; 

Garuti, Boero, & Lemut, 1998; Lannin, Ellis, & Elliott, 2011; Lockwood, Ellis, Dogan, Williams, 

& Knuth, 2012; Stylianides, 2008a; Zazkis, Liljedahl, & Chernoff, 2008). In this chapter we 

consider proof within this broader set of activities, which we cluster under the more 

encompassing activity of proving. Yet, we pay particular attention to those aspects of proving 

that relate to the construction, validation, or comprehension of mathematical arguments 

intending to meet the standard of proof. Our focus on these aspects was motivated by the fact 

that they were found to be especially problematic from both teaching and learning points of view.   

The Meaning of Proof in Mathematics Education and in This Chapter 
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The term “proof” has been used in a number of different ways in the field of mathematics 

education. In this section we present some of the definitions of proof discussed in the literature 

and we finish with the definition of proof we adopt in this chapter. 

Some researchers defined proof from a mathematical standpoint, associating it with 

logical deductions that link premises with conclusions (e.g., Healy & Hoyles, 2001; Knuth, 

2002b; Mariotti, 2000a). Some of these definitions also associate proof with one or more of its 

functions, notably explanation. For example, Knuth (2002b) used proof as “a deductive argument 

that shows why a statement is true by utilizing other mathematical results and/or insight into the 

mathematical structure involved in a statement” (p. 86). A related but more formal perspective 

holds that “a mathematical proof is a formal and logical line of reasoning that begins with a set 

of axioms and moves through logical steps to a conclusion” (Griffiths, 2000, p. 2). 

Other researchers defined proof from cognitive (e.g., Harel & Sowder, 2007) or social 

(e.g., Balacheff, 1988b; Manin, 1977) standpoints. Harel and Sowder (2007) used the term proof 

(or justification) to describe “what establishes truth for a person or a community” (p. 806), while 

reserving the term mathematical proof for “the mathematically institutionalized notion of proof” 

(p. 807). Balacheff (1988b) defined proof as “an explanation which is accepted by a community 

at a given time,” where explanation “describe[s] the discourse of an individual intending to 

establish for somebody else the validity of a statement” (p. 285). This is consistent with Manin’s 

(1977) view that an argument becomes a proof after the social act of accepting it as a proof. 

These different definitions illustrate the lack of consensus about what proof means in 

mathematics education research. Of course it may not be possible or desirable for all researchers 

to adopt a common definition of proof, not least because different research goals may be served 

better by certain definitions than others. Nevertheless, we would benefit as a field from being 
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explicit about the definitions of proof that underpinned our studies (Balacheff, 2002; Reid, 2005).  

Indeed, that kind of explicitness about our definitions of proof would help interpretation of 

research findings and facilitate comparisons of findings between different studies, thus 

contributing also to the development of a more coherent body of research knowledge in this area. 

Being consistent with this call for specificity, we state the definition of proof we use 

herein. In the context of a classroom community at a given time, we understand proof as follows: 

Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics: 
1. It uses statements accepted by the classroom community (set of accepted statements) 
that are true and available without further justification; 
2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 
or within the conceptual reach of, the classroom community; and 
3. It is communicated with forms of expression (modes of argument representation) that 
are appropriate and known to, or within the conceptual reach of, the classroom 
community. (Stylianides, 2007b, p. 291; emphasis in original) 

 
Given this definition of proof, we define proving broadly to denote the activity in search for a 

proof. As we noted earlier, this activity can include a cluster of other related activities that are 

often precursors to proving, such as generalizing and conjecturing.   

While not comprehensive, this definition of proof has certain features that make it 

appropriate for a review chapter.  Specifically, the definition is sufficiently “elastic” to describe 

proof across all levels of education and, as we explain next, it merges different mathematical, 

social, cognitive, and didactical points of view. From a mathematical point of view, the 

definition requires that arguments accepted as proofs use true statements, valid forms of 

reasoning, and appropriate forms of expression, whereby the terms “true,” “valid,” and 

“appropriate” should be understood in the context of contemporary mathematics. From a social 

point of view, the definition requires that the statements and forms of reasoning or expression 

that are used in an argument which meets the standard of proof be part of the respective 
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classroom community’s shared knowledge or part of knowledge that is potentially accessible to 

the community. From a cognitive point of view, the definition can be used to describe students’ 

conceptions of proof with respect to each of the three components of an argument identified in 

the definition: set of accepted statements, modes of argumentation, and modes of argument 

representation. Finally, from a didactical point of view, the definition can support judgments 

about whether students’ arguments meet the standard of proof and, if not, it can also support 

decisions about which specific components of students’ arguments require development so as to 

better approximate that standard. 

The Chapter’s Scope and Organization 

While we strove to consider all major strands of research in the area of proof, we 

doubtlessly and regretfully were unable to discuss all research work that deserved commentary. 

We acknowledge also that our choices about which research to review have been influenced by a 

number of factors, including our subjective and inevitably limited understanding of the field, and 

the desire for the chapter to be concise and coherent.   

With regard to the previous point about coherence, our choices of references have been 

guided by the chapter’s specific focus as reflected in the chapter’s thesis outlined earlier.2 As this 

was a quite different focus from the one in Harel and Sowder’s (2007) chapter on proof in the 

previous Research Handbook, which essentially covered research published up to 2003 and 

reviewed that research through the lens of the notion of justification schemes (to which we return 

later in the chapter), it was not sensible for us to restrict references in this chapter to post-2003 

publications. Furthermore, some foundational work in certain areas of our focus dates before 

2003, and so we needed to review some of that older work in order to contextualize more recent 

research findings and theoretical constructs. Yet, to the extent possible we concentrated on recent 
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publications, notably refereed publications and few doctoral dissertations in important areas with 

scarcity of published research. Also, we note that a large and important body of research on 

proof has been published in the refereed proceedings of the International Group for the 

Psychology of Mathematics Education (PME), but we have not devoted much space in this 

chapter to discussion of this research as it has been reviewed elsewhere (Mariotti, 2006; 

Stylianides, Bieda, & Morselli, forthcoming). 

The chapter is structured as follows.  Next, we review research on proving from three 

different perspectives that we identified: proving as problem-solving, proving as convincing, and 

proving as a socially-embedded activity. After that, we explore the place of proof in typical 

school mathematics classroom practice and discuss factors that contribute to the predominantly 

marginal place of proof in ordinary classrooms.  Then, we review research on classroom-based 

interventions in the area of proof and discuss possibilities of future interventions in this area. 

Research on Proving From Three Different Perspectives 
 

Proving is a multi-faceted activity and educational researchers have investigated it from 

different perspectives.  From our subjective reading of the literature, we identified three broad 

research perspectives in the area of proof and use those as the organizing structure for our 

discussion in this section. Specifically, we identified some studies that built upon the problem-

solving literature in cognitive psychology and conceptualized proving as problem-solving; the 

aim of research within this perspective is to understand the skills, competencies, and dispositions 

that students need in order to produce adequate performance on proof-related activities. 

Alternatively, we identified some studies on proof from a constructivist perspective that 

conceptualized proving as convincing; the aim of research within this perspective is to 

understand students’ or teachers’ standards of mathematical conviction and their proximity to 
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acceptable standards in the discipline. Finally, we identified other studies that conceptualized 

proving as a socially-embedded activity and investigated how proof is practiced in mathematical 

and classroom communities. 

In this section we provide an overview of each of these three research perspectives. As 

the focus of these perspectives has predominantly been on students’ or teachers’ understandings 

of proof, we begin our review of each perspective with a summary of desired understandings of 

proof. We then move on to consider critical questions examined within each perspective, major 

theoretical constructs related to the perspective, and key empirical findings that relate mostly to 

students’ or teachers’ (mis)understandings of proof. We conclude with a critical commentary on 

the state of research within each perspective and pose questions for future research. 

We do not try to give an exhaustive review of all research studies conducted within each 

perspective. Rather, our focus is on those studies or theoretical constructs that we think have 

been particularly influential or have the potential to shed substantial light on critical issues in the 

field. Although we use how each of the three perspectives views proving as an organizing 

structure for our review, we do not mean to suggest that each study or construct is fully aligned 

with the respective view of proving in which we discuss it – only that it seems to fit in better 

with that view as compared to the other views. Likewise, we do not wish to imply that the 

researchers we cite would generally align themselves with the perspectives in which we 

classified their particular studies, only that the particular study seemed aligned better with one 

perspective than others. 

Research Within the Proving as Problem-solving Perspective 
 

Desired understandings of proof. Research on proof from a cognitive psychology 

perspective frequently conceptualizes proving, and proof-related tasks such as evaluating the 
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correctness of a proof, as a special type of problem solving (e.g., Gick, 1986; Koedinger & 

Anderson, 1990; Koichu, Berman, & Moore, 2007; Mamona-Downs & Downs, 2005; 

Schoenfeld, 1985; Selden & Selden, 2013; Weber, 2001, 2005). Within the problem-solving 

perspective, researchers desire that students are able to provide correct, or normatively 

acceptable, answers to proof-related tasks. Most often, this includes students being able to write 

arguments that researchers would consider to be proofs. Researchers also investigate whether 

students can determine if an ostensibly deductive argument is valid or if it contains a logical 

error (Selden & Selden, 2003). The key focus tends to be on the process of producing a proof 

(and hence the frequent use of the phrases “proof production” and “proof construction”) rather 

than the meaning of the product of this reasoning (i.e., the written proof of the solver). Broader 

issues of what consists a correct or normatively acceptable answer, or why individuals or 

communities might wish to engage in these proof-related tasks, do not usually receive emphasis 

within this perspective but are addressed in the other two perspectives. 

 
Critical questions. Research in the proof as problem-solving perspective frequently 

involves answering the following questions: (1) What is students’ rate of success on proof-

related tasks? (2) What set of competencies (e.g., knowledge, skills, strategies, dispositions) are 

needed to achieve success on proof-related tasks? (3) How do experts (notably mathematicians) 

approach proof-related tasks and why are they successful? (4) How do students approach proof-

related tasks and what proof-related competencies do they lack? (5) How can we design 

instruction to help students develop the competencies needed to write and understand proofs 

successfully? The bulk of the research in this area concerns questions (2), (3), and (4), which are 

typically investigated by carefully examining the processes of students or mathematicians 

writing proofs, often using verbal protocol analysis.  
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Theoretical constructs. There are several theoretical constructs that were used to address 

the aforementioned issues. Selden and Selden (2013) made a key distinction between the formal-

rhetorical part of proof production and the problem-centered part of proof production. Put 

simply, the formal-rhetorical part of proving involves focusing on the logical aspects of 

structuring a proof, while the problem-centered aspect of proving involves the creative decision-

making aspects of proving. Hence, this dichotomy can be helpful in attributing shortcomings in 

proof writing to having a faulty understanding of logic or being unable to generate the key 

insights needed to produce a proof. 

 The formal rhetorical part of proving involves choosing a proof framework (Selden & 

Selden, 1995) and using the logical structure of the statement to form suitable hypotheses and 

conclusions and then unpacking the definitions. Selden and Selden (2013) noted that the formal-

rhetorical part of proof writing is largely procedural so this might be amenable to direct 

instruction. As a critical commentary, we wonder if the choice and implementation of a proof 

framework is entirely procedural and suspect that some aspects of this might fruitfully be 

understood as an instance of strategic decision-making. For instance, how should a student 

decide whether to use a direct proof, a proof by contradiction, or a proof by cases?3 If one 

decides to use a proof by cases, how would they know what cases to consider (e.g., splitting the 

integers into odd and even numbers, positive and negative numbers, etc.)? Selden and Selden’s 

(2013) distinction between the formal rhetorical and problem-centered activities in proof writing 

is valuable, but we suggest the difference between the two is nuanced. 

 Researchers focusing on the problem-centered part of proving generally aim to 

understand how the key insights needed to construct a proof are developed. To do so, researchers 

frequently make a distinction between the processes that an individual uses to produce a proof 
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and the type of formal argument that is the result of these processes. Weber and Alcock (2004, 

2009) referred to proofs based entirely on manipulating formal representations of concepts as 

syntactic proof productions and proofs where inferences were drawn from graphs, diagrams, 

examples, or other informal representations as semantic proof productions. Raman (2003) made 

an analogous distinction between proofs based on a procedural idea and proofs based on a key 

idea, with the former being based on manipulation and the latter being based on an insight 

gained from an informal, private way of understanding a concept.4 Whereas Weber and Alcock’s 

(2004, 2009) construct is based on an individual’s cognition, Raman (2003) argued that a 

student’s propensity to avoid proofs based on key ideas may be due to the epistemological belief 

that there is no relationship between private ways of knowing and public rigorous proofs. 

Garuti, Boero, and Lamut (1998) proposed the related construct of cognitive unity, which 

occurs when there is a continuum between the processes used to generate or evaluate a 

conjecture and the proof used to verify the conjecture. Whereas “semantic proof productions” 

and “proofs based on key ideas” involve students forming a bridge between representation 

systems, “cognitive unity” is centered on bridging the activities of conjecturing and proving. 

Hence, the aforementioned constructs may be understood as representing similar phenomena (i.e., 

accounting for the informal reasoning used to produce a proof), but highlight different aspects of 

the informal reasoning (representation systems, epistemology, and the aim of students’ activity). 

 Taking a critical lens to constructs of this type, we acknowledge that these constructs 

give much needed attention to the informal aspects of proving. However, their dichotomous 

nature can cause problems in two respects. First, the line between an informal representation and 

a formal representation, as in Weber and Alcock’s (2009) framework, or whether a particular 

piece of reasoning is private or public, as in Raman’s (2003) framework, seem to be highly 
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dependent on context and may be subjective. Dawkins (2012) argued that verbal descriptions of 

mathematical phenomena appear to be neither entirely formal nor based on informal 

representations of concepts, making such statements difficult to situate within Weber and 

Alcock’s semantic/syntactic framework. Second, the dichotomous nature of such frameworks 

may make them too coarse of a tool to give an accurate account of individual proving episodes 

(Sandefur, Mason, Stylianides, & Watson, 2013; Weber & Mejia-Ramos, 2009).  

 
Key findings. We will now discuss five key findings of research on the proving as 

problem-solving perspective. 

Students from lower secondary school to the university level often have difficulty 

writing proofs. This finding relates to the first critical question of this perspective: How 

successful are students at writing proofs? In a pioneering study notable for its large sample, Senk 

(1989) asked 1,520 secondary students taking a geometry class to prove four theorems, two of 

which required only a single deduction beyond the hypotheses. Senk found that only 30% of the 

students were able to prove at least three theorems and 29% were unable to construct a single 

proof. More recently, other large-sample studies have found similarly poor success rates with 

lower secondary school students (e.g., Knuth, Choppin, & Bieda, 2009), high school students 

(e.g., Healy & Hoyles, 2000), and mathematics majors (e.g., Iannone & Inglis, 2010). 

Students often lack many of the competencies needed for proving. The next key 

findings relate to the competencies needed to write proofs successfully and the extent that 

students have or lack these competencies. Researchers have posited many reasons that students 

cannot write proofs. Within Selden and Selden’s (2013) formal-rhetorical aspect of proving, 

students have difficulty choosing a legitimate proof framework to begin their proof (Selden & 

Selden, 1995), in part because of their difficulty making sense of statements with a complex 
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logical structure, such as statements with nested conditionals (Zandieh, Roh, & Knapp, 2014), or 

because they do not understand the proof methods they try to use (e.g., Stylianides, Stylianides, 

& Philippou, 2004, 2007). A particular concern lies with students’ misuse of quantifiers. Epp 

(2009) noted that students have particular difficulties with existence statements, such as not 

realizing that one should avoid using the same symbol to denote different existential objects. 

With multiply quantified “for all-there exist” statements, students need to see that the existential 

variable is dependent on the universal variable. If the universal variable changes, the existential 

variable will need to change as well (e.g., Arsac & Durrand-Gurrier, 2005). 

 With regard to the problem-solving aspects of proving, researchers have remarked that 

students lack proving strategies or heuristics (e.g., Schoenfeld, 1985; Weber, 2001) or are 

reluctant to use examples or diagrams in their reasoning (Raman, 2003; Weber, 2001). In general, 

these findings came from small-scale studies that have not been replicated. Confirmatory studies 

with larger samples, particularly those where the constructs are measured separately from 

performance on the proving tasks, would place this research on a more secure footing.  

The consideration of diagrams and examples is potentially beneficial for students who 

are writing proofs. In a study of 12 mathematics majors constructing proofs in a real analysis 

course, Gibson (1998) noted that when these students reached an impasse, they often constructed 

diagrams. From these diagrams, the students gained insights that helped them overcome their 

impasse. Gibson noted that “using diagrams helped students complete sub-tasks that they were 

not able to complete while working with verbal-symbolic representation systems alone” (p. 284) 

by facilitating understanding, evaluating the truth of statements, generating ideas, and expressing 

ideas. Sandefur et al. (2013) reported a similar study on example usage where the authors 

illustrated how small groups of students, working on number theoretic tasks, gained conceptual 
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insights from studying examples that formed the basis for the proofs they wrote. Others have 

reported case studies showing similar beneficial effects of diagrams and examples (e.g., Alcock 

& Weber, 2010; Garuti et al., 1998; Lockwood et al., 2012; Pedemonte, 2007; Samkoff, Lai, & 

Weber, 2012) in proof-writing for both students and mathematicians. 

Students often have difficulty translating informal arguments into proofs. Although 

diagrams and examples sometimes provide students with conceptual insights for why theorems 

are true, Duval (2007) cautioned that the transition between informal arguments and proofs can 

be difficult. Just as there are case studies of students successfully translating arguments based on 

these conceptual insights into proofs, there are also case studies where students are unable to do 

so (e.g., Alcock & Weber, 2010; Pedemonte, 2007; Pedemonte & Reid, 2011). Alcock and 

Simpson (2004) found that diagrams can aid proof-writing, but also can inhibit it by providing 

students with false confidence in conjectures and leaving students confused about what can be 

assumed and what needs to be proven (echoing concerns by Duval, 2007). In fact, researchers 

who have compared those who have used examples or diagrams with those who have not, in the 

learning of advanced mathematics, have found that neither group appears to outperform the other 

(e.g., Alcock & Inglis, 2008; Alcock & Simpson, 2004, 2005; Pinto & Tall, 1999).  

 To account for students’ difficulty in translating informal arguments into proofs, 

Pedemonte and her colleagues have conceptualized the distance between the informal arguments 

that students construct and the proofs that could result from those arguments (Pedemonte, 2002, 

2007, 2008; Pedemonte & Reid, 2011). For instance, if the structural distance is too wide – that 

is, if the warrants in the informal argument differ considerably from those that would be used in 

the proof – students will have trouble producing this proof (e.g., Pedemonte, 2007). Zazkis, 

Weber, and Mejia-Ramos (in press) have identified activities that students who can successfully 
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translate informal arguments into proofs regularly engage in. These include syntactifying 

(expressing informal claims in precise mathematical language), elaborating (being explicit about 

what principles are being used to derive new inferences and justifying facts), and rewarranting 

(providing a logical backing for graphical inferences). 

 In general, we know that diagrams and examples can be useful for students but often are 

not. A key aim of future research, then, is understanding what processes can be used to reap the 

benefits from diagrams and examples and designing instruction so that students can employ 

diagrams and examples more effectively. 

Students and teachers are often unable to distinguish between proofs and invalid 

arguments. While the majority of research on students’ performance on proof-related tasks 

concerns students’ ability to construct proofs, Selden and Selden (2003) argued that students’ 

ability to check a proof for correctness, which they call validating a proof, is also important. To 

measure students’ competency at this proof-related task, Selden and Selden (2003) presented 

eight undergraduates in a transition-to-proof course with four arguments purporting to prove that 

“if n2 is divisible by 3, then n is divisible by 3.” They found that students initially performed at 

chance level, only responding correctly about half the time. These findings were replicated in 

studies with other undergraduates (Alcock & Weber, 2005; Inglis & Alcock, 2012; Ko & Knuth, 

2013; Weber, 2010) and were consistent with studies of preservice secondary teachers (Bleiler, 

Thompson, & Krajcevski, 2014) and inservice secondary teachers (Knuth, 2002a).  

 There are two competencies that mathematics majors seem to lack that are necessary for 

proof validation. First, this population will frequently accept a proof of a conditional statement 

that assumes the conclusion and deduces the antecedent (i.e., proves the converse) (e.g., Inglis & 

Alcock, 2012; Selden & Selden, 2003; Stylianides et al., 2004; Weber, 2010). That is, these 
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students are frequently unable to identify when an invalid proof framework is used in a proof. 

Selden and Selden (2003) hypothesized that this was because students focused on local 

calculations within a proof rather than on its global structure. Second, Weber and Alcock (2005) 

argued that, to validate a proof, students need to infer warrants or the mathematical principles 

used to deduce new principles. Studies have found that students frequently do not do this 

(Alcock & Weber, 2005; Inglis & Alcock, 2012) and hence do not recognize when flawed 

reasoning is being applied.  

Critical commentary and directions for future research. While there have been 

several large scale studies documenting students’ difficulties with producing proofs, there is not 

a widely used instrument that is used to measure students’ proof-writing competence. Indeed, 

there is little overlap between the tasks used in studies that explore students’ proof-writing 

competence. Further, most researchers have tended to focus on what older students cannot do, 

but as we will illustrate in the next section, others emphasize what younger children can do. A 

consequence is that the literature might be interpreted as suggesting that mathematics majors 

cannot write proofs while young children can. We are skeptical of such a claim; at least it would 

need empirical support with young children succeeding on a task at which mathematics majors 

fail. There is also a gap in the literature with older students where we lack a sense of what proof-

related tasks they can successfully accomplish. For instance, although we know that mathematics 

majors struggle to complete non-routine or difficult proofs, we do not know the extent that they 

could successfully prove more basic theorems, such as “The product of two odd integers is odd” 

or “If f(x) and g(x) are strictly positive increasing functions, then f+g(x) and fg(x) are also strictly 

increasing functions.” Having a shared measure of proving competence would also allow more 
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insightful comparisons across different studies and different populations, while also providing a 

means to assess the efficacy of instructional interventions. 

 Research touting the benefits of using examples or diagrams to facilitate proof writing 

largely consists of small-scale studies that highlight the affordances of these representations. 

However, other research failed to find a correlation between students’ propensity to use 

examples and diagrams and their ability to write proofs. Claims that diagrams and examples have 

the potential to benefit students seem fairly well established. What is urgently needed are ways to 

help students realize the benefits of employing diagrams and examples. Research comparing the 

ways that successful provers (e.g., mathematicians, strong students) and unsuccessful provers 

(e.g., typical students) use diagrams and examples is one avenue for addressing this question. 

 Research into how students understand proof is limited (Mejia-Ramos & Inglis, 2009), 

but many claim students have difficulty understanding the proofs that they read (e.g., Conradie & 

Firth, 2000; Cowen, 1991). Recently, there have been theoretical advances in what it means to 

comprehend a proof and how this understanding can be assessed (Mejia-Ramos et al, 2012; 

Stylianides & Stylianides, 2009a; Yang & Lin, 2008), which may spur more research in this area. 

Research Within the Proving as Convincing Perspective 
 

Desired understandings of proof. Within the proving as convincing perspective, the 

goal of instruction is typically for students to be convinced by the same types of evidence as 

mathematicians (e.g., Harel & Sowder, 2007). To specify this goal further, one needs to clarify 

what arguments convince mathematicians. Two assumptions made in much of this literature is 

that mathematicians are convinced by deductive arguments (i.e., arguments using valid modes of 

argumentation as specified in our definition of proof) as opposed to arguments based upon 

empirical evidence and appeals to authority (Harel & Sowder, 1998, 2007; Recio & Godino, 



	
  

	
   18 

2001), and that a proof is an argument that would convince a mathematician or a given 

mathematical community (Davis & Hersh, 1981; Harel & Sowder, 1998, 2007; Volminik, 1990). 

Hence, within this perspective, the goal of instruction is for students to recognize the limitations 

of empirical or authoritative evidence (e.g., Stylianides & Stylianides, 2009b), and to receive 

high-levels of (or absolute) conviction by deductive arguments.  

 This perspective differs from the proving as problem-solving perspective in the following 

sense. Proving as problem-solving frequently focuses on what students can do to produce an 

acceptable product without necessarily problematizing what an acceptable product is to 

mathematicians or would be to the students. Proving as convincing tends to focus on students’ 

interpretation of what a personally meaningful and professionally acceptable product would be, 

while being less concerned with how such a product might be produced. 

Critical questions. Research in the proving as convincing perspective often seeks to 

investigate the types of arguments that convince various groups, such as school or university 

students and preservice or inservice teachers. Key questions include: (1) What types of 

arguments or evidence convince various populations of students or teachers that mathematical 

assertions are true? (2) In what ways do students’ or teachers’ standards of conviction differ with 

those of the mathematical community? (3) What types of instruction can encourage students or 

teachers to better align their ways of obtaining conviction with those held by the mathematical 

community? The bulk of the research in this area concerns questions (1) and (2), which have 

typically been investigated using survey or interview methods. 

Theoretical constructs. A number of frameworks have been developed to describe, 

classify, or analyze the types of arguments students or teachers find convincing or the arguments 

they offer to convince others (e.g., Balacheff, 1988a, 1988b; Bell, 1976; Hadas, Hershkowitz, & 
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Schwarz, 2000; Harel & Sowder, 1998, 2007; Marrades & Gutiérrez, 2000; Miyazaki, 2000; 

Simon & Blume, 1996). Most of these frameworks were developed in the earlier stages of 

research on proof and have been used since then by studies on students’ or teachers’ standards of 

mathematical conviction. Two frameworks have been particularly influential and have 

underpinned the development of subsequent frameworks: Balacheff’s (1988a, 1988b) hierarchy 

of arguments and Harel and Sowder’s (1998, 2007) framework on justification schemes.  

Balacheff’s (1998a, 1998b) hierarchy of arguments distinguished between four main 

argument types, which, as he asserted, “hold a privileged position in the cognitive development 

of proof” (Balacheff, 1988a, p. 218).  These are: (1) naïve empiricism, in which a statement is 

accepted as true based on the confirming evidence offered by examination of a few but not all 

possible cases; (2) crucial experiment, in which a statement is accepted as true based on 

verification of its truth in one or more carefully selected cases that are considered to put the truth 

of the statement to the test; (3) generic example, in which the truth of a statement is established 

by means of operations or transformations on a particular case that is considered to be 

representative of its class; and (4) thought experiment, in which the truth of a statement is 

established by means of internalized action that detaches itself from a particular representation.  

Harel and Sowder’s (1998, 2007) classification of students’ justification schemes (or 

proof schemes) signify what arguments convince students and what arguments students offer to 

convince others.  Harel and Sowder organized students’ justification schemes into three 

categories, each of which has several subcategories: (1) externally-based, when conviction 

resides in some external to the student source such as an authority (authoritarian justification 

scheme), the form of an argument (ritual justification scheme), or meaningless treatment of 

symbols (non-referential symbolic justification scheme); (2) empirical, when conviction is based 
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solely on the use of one or more examples (examples-based or inductive justification scheme) or 

on perception of one or more drawings (perceptual justification scheme); and (3) deductive or 

analytic, when conviction is based on reasoning concerned with the general aspects of a 

mathematical situation (transformational justification scheme) or on logical deduction of new 

results from accepted ones (axiomatic justification scheme).  

Marrades and Gutiérrez’s (2000) framework is an example of a more recent framework 

that built on and aimed to synthesize earlier frameworks, primarily those by Balacheff, and Harel 

and Sowder. Also, some other frameworks were specifically designed for use in particular 

mathematical domains or learning contexts.  For example, Miyazaki (2000) noted that the 

framework he developed would be readily applicable in algebra but not in geometry. Another 

example of a more specialized framework is by Hadas et al. (2000), which was specifically 

concerned with student arguments generated in the context of tasks that created contradictory 

situations and were investigated by students with the mediation of a dynamic geometry tool. One 

of the argument types was visual-variations, which described explanations that use imagery or 

actual visual variation induced by dragging.  According to the researchers, this argument type is 

particular to explanations in dynamic geometry learning environments.  

Taking a critical lens to the available frameworks in this area, we acknowledge that they 

offer a robust collection of analytic tools for researchers to use or adapt as they study students’ or 

teachers’ standards of mathematical conviction.  We are not in a position to precisely map certain 

research goals onto particular frameworks, and indeed it is possible that the same goals might be 

served reasonably well by different frameworks, as there is clearly overlap among them.  We 

nevertheless observe that the two frameworks we singled out as having been particularly 

influential for research on students’ or teachers’ standards of mathematical conviction (Balacheff, 
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1988a, 1988b; Harel & Sowder, 1998, 2007) offer, each one in its own but not necessarily 

distinctive way, a rather broad coverage of the possible or common arguments that students or 

teachers can generate or find convincing.  The work of Marrades and Gutiérrez (2000) shows 

further that a synthesis of these two frameworks can be possible thus broadening even more the 

argument types covered by them.  Yet, there may still be situations where researchers can choose 

to use frameworks with a simpler hierarchical structure (e.g., Bell, 1976; Simon & Blume, 1996) 

or others with a more specialized focus (e.g., Hadas et al., 2000; Miyazaki, 2000). 

While the available frameworks cover a wide range of argument types, we suggest that 

they are more applicable to arguments generated in the context of proving tasks involving 

justification of true statements over infinite sets (e.g., “the sum of any pair of odd numbers is an 

even number”). These frameworks are less relevant to arguments generated in the context of 

proving tasks involving refutation of false statements (e.g., “all multiples of three are also 

multiples of six”) or statements over finite sets (e.g., “there are four prime numbers between 10 

and 20”) as well as the related proof techniques of disproof by a counterexample and proof by 

exhaustion.  Indeed, existing frameworks would need some expansion or adaptation in order to 

capture the multitude of arguments (valid and invalid) that might be generated in this broader 

range of tasks (e.g., Stylianides & Ball, 2008; Tsamir et al., 2008).  

Finally, we observe that two constructs discussed in a number of frameworks, albeit with 

some variation in the used terminology and definitions, have received considerable attention in 

the relevant literature.  The first construct is empirical argument, which is generally used to 

describe an (invalid) argument that purports to show the truth of a statement based on 

verification of a proper subset of all the cases covered by the statement.  According to the 

definition of proof we use in this chapter (Stylianides, 2007b), empirical arguments fail to meet 
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the standard of proof due to the invalid modes of argumentation they use.  Balacheff’s (1988a) 

notions of “naïve empiricism” and “crucial experiment” can be seen as two different kinds of 

empirical arguments (with the latter being more sophisticated than the former), while Harel and 

Sowder’s (1998) notion of “empirical justification scheme” can be used to describe the 

conception of a student who considers an empirical argument to be a proof. Empirical arguments 

received extensive coverage due to students’ propensity to produce them. 

The second construct is a particularly important type of example-based argument called 

generic argument (also referred to frequently as generic proof). A generic argument establishes 

that a claim about a set of elements holds for a generic element (or example) in that set of 

elements (Mason & Pimm, 1984). A generic element is an element of that set that possesses no 

special properties so that the reasoning used for why the claim is true for that element can be 

generalized to any element. Generic arguments are considered particularly important for two 

reasons: (1) they can serve as a bridge between empirical arguments and non example-based 

deductive arguments (e.g., Balacheff, 1988a; Harel, 2001); and (2) due to their concreteness and 

specificity, generic arguments might be more accessible to students than conventional proofs, 

especially for students who find the abstract nature of proof to be an intimidating barrier to 

comprehension (e.g., Leron & Zaslavsky, 2013; Movshovitz-Hadar, 1998; Rowland, 2002). 

Key findings. The research studies in this area involved participants from all levels of 

post-elementary education (including the university and teacher education levels), but they 

focused mainly on secondary students and preservice elementary teachers. In this section we 

discuss four key findings from this body of research, which relate to key questions (1) and (2) we 

listed earlier; findings related to question (3) are discussed later in the chapter.   
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The first two findings concern students’ or teachers’ understandings of what evidence 

suffices to justify or refute a statement, with particular attention to the notions of empirical 

argument, counterexample, and proof.  The other two findings concern students’ or teachers’ 

understandings of logical principles (notably the equivalence or not between a conditional 

statement and its converse, inverse, or contrapositive) or specific proof methods (notably proof 

by mathematical induction).  Overall, the research from which these findings derive has 

identified certain misunderstandings that often lead students or teachers to be convinced by 

invalid arguments or to be unconvinced by valid arguments and proofs.  

Students and teachers are often convinced by empirical arguments as proofs of 

generalizations. Many studies found that students and teachers were convinced by empirical 

arguments as proofs of generalizations, as reflected either in their own argument constructions or 

their evaluations of given arguments (e.g., Buchbinder & Zaslavsky, 2007; Goulding, Rowland, 

& Barber, 2002; Goulding & Suggate, 2001; Healy & Hoyles, 2000; Knuth, Choppin, Slaughter, 

& Sutherland, 2002; Morris, 2002, 2007; Sowder & Harel, 2003; Tapan & Arslan, 2009).  For 

example, in an interview study with 34 preservice elementary and lower secondary school 

teachers in the United States, Morris (2007) found that 41% of the research participants were 

convinced that an empirical argument of the form of crucial experiment that was presented to 

them proved, with absolute certainty, that a generalization over an infinite set was true. 

Students and teachers are often unconvinced by the power of proof to prove. Some 

studies found students or teachers to be unconvinced by the power of deductive arguments to 

establish conclusively the truth of true mathematical generalizations (e.g., Chazan, 1993; 

Fischbein, 1982; Fischbein & Kedem, 1982; Morris, 2007; Schoenfeld, 1991).  For example, in 

the same study with preservice teachers cited above, Morris (2007) found that only 62% of the 
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participants were convinced that a particular valid argument that met the standard of proof 

demonstrated, with absolute certainty, that a generalization over an infinite set was true. Some 

other studies found students or teachers to be unconvinced that a single counterexample can 

establish conclusively the falsity of a mathematical generalization, and they tended to dismiss the 

counterexample as a special case (e.g., Balacheff, 1988b; Mason & Klymchuk, 2009; Simon & 

Blume, 1996; Stylianides et al., 2002).  Students’ or teachers’ limited faith in the power of a 

single counterexample to refute a generalization is an illustration of the larger set of difficulties 

that students, including mathematics majors, and teachers tend to have with proof by 

counterexample (e.g., Ko & Knuth, 2009, 2013; Leung & Lew, 2013). 

Students and teachers are often convinced that a conditional statement is equivalent to 

its converse or inverse, and unconvinced that it is equivalent to its contrapositive. Students and 

teachers were found to be convinced that a conditional statement is equivalent to its converse 

(e.g., Hoyles & Küchemann, 2002; Yu, Chin, & Lin, 2004) or to its inverse (e.g., Goetting, 1995; 

Knuth, 2002a; Stylianides et al., 2004), while they were also found to be unconvinced by a proof 

of a conditional statement that used the contraposition equivalence rule (e.g., Goetting, 1995; 

Stylianides et al., 2004).  For example, in two large-scale studies with high school students, one 

in England (Hoyles & Küchemann, 2002) and the other in Taiwan (Yu et al., 2004), more than 

half of the students considered a conditional statement to be equivalent to its converse, while ten 

of the participants in a study with 16 American secondary mathematics teachers accepted as a 

proof an invalid argument that assumed an equivalence between a statement and its inverse 

(Knuth, 2002a).  Also, in a study with 95 Cypriot senior undergraduate students of whom 70 

were education majors (preservice elementary teachers) and 25 were mathematics majors, 47% 

of the education majors and 28% of the mathematics majors rejected an argument that correctly 
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represented a proof by contraposition, while only 76% of the education majors and 60% of the 

mathematics majors rejected a false conclusion that assumed an equivalence between a 

conditional statement and its inverse (Stylianides et al., 2004).  Students’ and teachers’ 

difficulties with conditional statements belong to a broader set of difficulties that include also 

difficulties related to understanding or using implication (e.g., Durand-Guerrier, 2003; Hoyles & 

Küchemann, 2002), or formulating and interpreting the negation of a claim as in proof by 

contradiction (e.g., Antonini, 2001; Antonini & Mariotti, 2008).    

Students and teachers are often convinced by superficial features of proof by 

mathematical induction. University students and teachers were found to have limited 

understanding of proof by mathematical induction and to be convinced by superficial features of 

this proof method (e.g., Brown, 2008; Dubinsky, 1986, 1990; Dubinsky & Lewin, 1986; Harel, 

2001; Knuth, 2002a; Movshovitz-Hadar, 1993; Smith, 2006; Stylianides et al., 2007).  For 

example, in the same study with American secondary mathematics teachers described earlier 

(Knuth, 2002a), some of the participants accepted a proof by mathematical induction not because 

they understood the method, but because they knew the method could be used in similar 

mathematical situations.  Also, in the same study with Cypriot senior undergraduate students 

described earlier (Stylianides et al., 2007), 47% of the education majors and 35% of the 

mathematics majors who accepted a proof by mathematical induction of an open sentence were 

convinced that the truth set of the sentence could not include elements (positive integers) outside 

of its domain of discourse covered by the proof, i.e., they were not open to the possibility that a 

proof by mathematical induction might not be as encompassing as it could be. 

Critical commentary and directions for future research. A key assumption we made 

in our review of the literature in this section, and one that has been made (often tacitly) in studies 
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we reviewed, was that the types of arguments students or teachers produce as proofs or evaluate 

as proofs are indicative of their standards of mathematical conviction. Yet, there is evidence 

challenging this assumption: it may be easier for solvers to evaluate given arguments than to 

construct their own arguments (Reiss, Hellmich, & Reiss, 2002); it may be easier for solvers to 

identify invalid arguments as invalid than to identify valid arguments as valid (Inglis et al., 2013; 

Reiss et al., 2002); solvers’ poor argument constructions can be misleading indicators of what 

they think would meet the standard of proof, because they may be well aware of the limitations 

of their arguments but unable to produce better ones (Knuth, Choppin, & Bieda, 2009; 

Stylianides & Stylianides, 2009a; Weber, 2010; Weber & Mejia-Ramos, in press); students may 

evaluate given arguments differently based on what would satisfy them personally or what would 

satisfy their teachers (Healy & Hoyles, 2000). Further, there is the (again often tacit) assumption 

that students’ construction or evaluation of a given empirical or deductive argument is indicative 

of robust beliefs about empirical or deductive arguments in general. There is also evidence to 

challenge this assumption: teachers may evaluate given arguments differently based on whether 

they had previously been exposed to a lesson transcript that included or omitted a student proof 

(Morris, 2007); and solvers may perform differently in argument construction in the areas of 

algebra versus geometry (Leung & Lew, 2013) or in argument evaluation when the underpinning 

logical principle is expressed using words versus symbolic notation (Stylianides et al. 2004). In 

short, students’ and teachers’ argument constructions or evaluations may not indicate stable 

beliefs but appear to depend on context. 

The aforementioned findings raise a number of important factors and methodological 

considerations that future research investigating the types of arguments that convince various 

groups needs to consider. Also, given that existing studies on the topic considered at most one or 
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two of these factors that can influence inferences about students’ or teachers’ standards of 

mathematical conviction, the issue is raised about the different meanings of “conviction” used in 

or reflected in the findings of those studies (see Weber & Mejia-Ramos, in press).  The issue is 

further complicated by other findings that students’ responses to even well-designed survey 

items can lead, in the absence of follow-up interviews aiming at clarifying students’ responses, to 

conclusions that considerably understate the level of students’ understandings of proof 

(Stylianides & Al-Murani, 2010).  Thus, there is a need for the development of more refined 

methodological approaches to examining students’ standards of mathematical conviction and for 

more consistent application of these approaches in future research on the topic. One 

recommendation is that participants in these studies should always be given the chance to explain 

and qualify their responses; by allowing this, one can see if students are absolutely convinced of 

a claim because of an empirical argument (which can be problematic) or merely think the claim 

is probably true (which is not problematic) (Weber & Mejia-Ramos, in press). Further, allowing 

space for explanation can reveal that ostensibly problematic responses by participants may 

actually be based on rational mathematical reasoning (Stylianides & Al-Murani, 2010).  

Finally, while there is extensive research on students’ perceptions of empirical arguments, 

there has been less research on students’ perceptions of diagrammatic arguments and 

mathematicians’ standards of conviction.  Perhaps one reason mathematicians’ justification 

schemes have received less attention is that it is widely presumed that mathematicians only gain 

conviction by deductive evidence, rather than also by empirical evidence or appeals to authority.  

However, recent studies challenge these findings (see Weber, Inglis, & Mejia-Ramos, 2014; 

Weber & Mejia-Ramos, 2013).  Indeed, it is not clear that mathematicians even agree on what 
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constitutes acceptable evidence or a proof (e.g., Dreyfus, 2004; Inglis et al, 2013), which 

suggests that a more nuanced understanding of mathematical practice is needed. 

Research Within the Proving as a Socially-embedded Activity Perspective 

 The previous perspectives have implicitly treated proving as either an individual activity 

that is aimed toward solving a problem or as a means of gaining conviction. However, in 

mathematical practice, proving usually occurs within a social context (i.e., a mathematician 

engages in proving to justify or explain a claim to their peers and it is the peers who sanction 

whether an argument is a proof) and it is usually embedded within a broader mathematical 

activity. Indeed, as we discussed earlier, how and why one proves, and even what constitutes a 

proof, can be viewed as inextricably linked to the social context in which a proof occurs. 

 Within this perspective, the emphasis tends to be on activity rather than understandings 

(c.f. Sfard, 1998). In particular, a critical point is that individual proof-related tasks (e.g., 

constructing proofs, reading proofs) are not viewed in isolation (as the other two perspectives 

often do), but in the context of a broader mathematical activity. If a student or teacher produced a 

proof, research in this perspective would frequently place emphasis on the meanings of this 

artifact and how that individual and members of his or her community could subsequently use it. 

Desired understandings (or activities). At a broad level, one goal of instruction within 

this perspective is for students to engage in authentic mathematical activity of proving as it is 

practiced in the mathematical community, including meaningfully using proof to settle debates 

about the truth of contentious mathematical assertions (Alibert & Thomas, 1991; Zack, 1997) 

and as a tool for generating and communicating mathematical knowledge. As Manin noted, good 

proofs are proofs that make us wiser (cited in Aigner & Schmidt, 1998). A second goal is for 

classroom communities to use proof for the same reason as mathematicians, including providing 
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explanation (e.g., Hanna, 1990), illustrating new methods to solve problems (e.g., Hanna & 

Barbreau, 2010), and deepening one’s understanding of concepts (e.g., Larsen & Zandieh, 2008).  

Critical issues. As this perspective is less developed than the previous two perspectives, 

research in this area has not coalesced around particular questions. Important issues in this area 

include: (1) understanding mathematical practice with respect to proof, especially 

mathematicians’ reasons for engaging in proving; (2) identifying what proving is for students 

and teachers (rather than assuming a priori that proving is convincing); (3) designing classroom 

environments where proof can be seen as a tool for generating and communicating mathematical 

knowledge; and (4) creating social norms with respect to proof that invite students to prove and 

provide learning opportunities for students when engaged in proving activities. 

Theoretical constructs. Regarding the second research issue above, the most extensive 

work in this area has been the investigation of high school geometry classrooms by Herbst, 

Chazan, and their colleagues. Herbst, Nachlieli, and Chazan (2011) observed that most research 

on teaching has taken the stance that teachers autonomously enact their knowledge and beliefs to 

attain goals that they personally value. Herbst and Chazan (2003) adopted an alternative 

perspective, arguing that geometry teachers (and presumably all teachers) have a practical 

rationality, which is a feel for the craft of teaching that consists of: (1) their principles and values 

that allow them to justify (or discard) possible actions in an instructional situation; and (2) their 

dispositions (i.e., what values, commitments, and tendencies an outsider might use to describe 

the teachers’ actions). Herbst and Chazan’s main findings are that teachers’ and students’ actions 

in a geometry classroom are largely shaped by institutional norms specifying what their 

classroom responsibilities are. (For a review of some of this research, see Herbst et al., 2009).  
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 Another strand of research in this area has examined the role of proof within a classroom 

or mathematical community and how this role might be socially negotiated (e.g., Alibert & 

Thomas, 1991; Fukawa-Connelly, 2012b).  As this body of research is still developing and is not 

yet coherent, there are not widely used constructs common in this type of research.  Yet, 

available research offers a good basis for further conceptual work in this area. 

Key findings. Below we present some promising findings in this area. 

Students’ perceptions of proof are largely shaped by regularities that students observe 

in their classrooms. While much of the research on proof has focused on the types of arguments 

that individual students would find to be personally convincing, students may also evaluate a 

proof as an artifact that would be judged as acceptable by the mathematical community. Further, 

Hemmi (2006) hypothesized that, as students may feel that they are only peripheral members of 

that community, their judgments about the validity of an argument are likely influenced by how 

similar that argument is to other proofs that they had seen. Hemmi advanced this hypothesis by 

documenting that undergraduates would infer what counted as a proof by generalizing from the 

examples of proofs that they had seen in their university classes (see also Drefyus, 1999).  

 The effects of this student behavior can be seen in studies comparing what arguments 

students find convincing against what they believe constitutes a proof. For instance, Weber 

(2010a) presented 28 mathematics majors with a graphical argument in support of the claim that 

!"#  (!)
!

!
! 𝑑𝑥 was positive. Fourteen participants thought the argument was not a proof, with nine 

citing the use of a graph as their basis for rejecting this argument. Interestingly, five of the 

students who thought the argument was not a proof found the argument to be completely 

convincing, but said the argument could not be a proof because they did not see proofs with 

graphs in their mathematics classes.  
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The format in which proofs are written can constrain the types of reasoning that take 

place in mathematics classrooms. At least in the United States, proofs in geometry are 

sometimes written in a two-column format where a geometry statement appears in the left 

column and a reason for why that statement is logically permissible appears in the right column 

(Herbst, 2002a). Herbst (2002b) observed that this format places implicit (and sometimes 

conflicting) demands on teachers and students that constrain what is possible in a secondary 

school classroom. For instance, the two-column format implicitly requires giving students a 

statement (in the form of premises) and a conclusion, and testing students’ abilities to reason 

logically from the statement to the conclusion. This practice discourages students from 

generating key ideas from a proof, constructing their own diagrams, or making conjectures by 

choosing their own premises and conclusions (Herbst & Brach, 2006). 

Mathematicians usually do not read proofs to gain certainty in theorems but to 

advance their mathematical agenda. If a theorem or a proof is published in the literature, some 

mathematicians will not read the proof, but will consider its publication as sufficient grounds to 

use the theorem in their own research (Auslander, 2008; Geist, Löwe, & Van Kerkhove, 2010; 

Mejia-Ramos & Weber, 2014; Weber, 2008; Weber & Mejia-Ramos, 2011, 2013). Nonetheless, 

mathematicians frequently do read proofs, although the most common reason for doing so is to 

find ideas or techniques that might be applicable in their own work (Weber & Mejia-Ramos, 

2011; see also Rav, 1999). This can be seen when one looks at why mathematicians re-prove 

theorems, which is not usually done to provide conviction, but is often done to provide a more 

comprehensible explanation for why something is true or to illustrate the power of new 

techniques or representation systems (Dawson, 2006). The key point here is that, to 

mathematicians, a published proof is often not the end of an investigation that officially 
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sanctions a theorem; rather the content of the proof is studied by members of the mathematical 

community to advance their mathematical understanding (Rav, 1999). It is interesting to consider 

if proof can play an analogous role in mathematics classrooms.  

Students and secondary mathematics teachers often do not see proofs as providing 

explanation and have difficulty understanding proofs. As noted above, a primary purpose of 

proof for mathematicians is to find new methods for solving problems and advancing one’s 

mathematical understanding. Interviews with mathematicians revealed that they desire that proof 

play similar roles in the college mathematics courses that they teach (Nardi, 2007; Weber, 2012). 

However, Knuth’s (2002b) interviews with high school teachers showed that they viewed proof 

as a tool for conviction, not explanation or communication. Large-scale surveys suggest that 

secondary school students (Healy & Hoyles, 2000) and mathematics majors (Weber & Mejia-

Ramos, 2014) appear to view proof in the same limited manner. 

Negotiating productive classroom norms can highlight students’ responsibilities with 

respect to proof and thereby create learning opportunities. In analyzing the progression of an 

undergraduate abstract algebra course, Fukawa-Connelly (2012b) described how the instructor 

led the class in negotiating classroom norms about students’ responsibilities for the presentation 

of a proof. For instance, the presenters of the proof had the responsibility of explaining and 

defending their argument, responding to questions and challenges from the audience, explicitly 

highlighting the high-level ideas of their proof, and only using results that had previously been 

peer-validated. The audience of the proof had the responsibility of reading the proof carefully, 

deciding on its correctness, and asking questions when aspects of the proof were unclear. This 

differed from most traditional university classrooms where, if students presented a proof at all, 

the presentation was largely formal and the instructor was the one to judge its correctness. 
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Fukawa-Connelly’s work illustrated how these norms provided students with opportunities to 

develop many of the skills that we discussed earlier, under the proving as problem-solving 

perspective, while also using proof as a means of advancing conceptual understanding. At a more 

general level, other researchers have illustrated how making it normative that students provide 

their own justification for a claim – rather than relying on social cues from the teacher (Yackel & 

Cobb, 1996), an appeal to an authoritative source (Ball & Bass, 2000), or a democratic vote 

(Weber et al., 2008) – provides students with learning opportunities and autonomy. 

Critical commentary and directions for future research. Many researchers have 

argued that proof should play an explanatory and communicative role in mathematics classrooms 

(e.g., Knuth, 2002a; Harel & Sowder, 2007). However, as Raman (2003) and Weber (2010b) 

noted, there is not a consensus amongst mathematics educators as to what it means for a proof to 

explain; a similar argument can be made about whether a proof fulfills a communicative role. 

Recent philosophical analyses have revealed that mathematical explanation is a contentious and 

multifaceted concept (e.g., Mancosu, 2011). Furthermore, empirical studies have found that 

mathematicians do not agree on informal appraisals of proof on issues such as explanation, 

simplicity, and clarity (Inglis & Aberdein, in press). If explanation and communication are to be 

listed as goals of presenting proofs and an analytical tool to examine classroom behavior, 

mathematics educators will need to operationalize these constructs. Moreover, as mathematicians 

are heterogeneous with their judgments about these attributes (Inglis & Aberdein, in press), it 

might not be feasible to fully align these constructs with mathematical practice. 

 While Herbst and his colleagues have extensively investigated how proof is practiced in 

high school geometry classrooms and the teachers’ rationality for practicing proof in this way 

(e.g., Herbst et al, 2009), there has been limited research in how proof is practiced in domains 
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such as algebra or in college classrooms. Understanding proving activity in these classrooms and 

teachers’ rationality for supporting these activities would be important topics for future research. 

Also, it would be important to consider if proof can or should play the same role in classrooms as 

it does in the mathematical community. As Staples, Bartlo, and Thanheiser (2012) documented, 

the classroom teacher will sometimes have different professional needs than the mathematician. 

For instance, a teacher may ask a student to justify a claim that is obvious to a teacher to see if 

the student really understood the concept in question.  

Concluding Remarks 
 

The literature we reviewed in this section generally portrays a gap between desirable and 

typical student understandings of proof.  One might hypothesize that the size of the gap would be 

inversely proportional to students’ age, but the varying methodologies and research instruments 

used in different studies offer a weak basis on which to examine this hypothesis.  Yet, the 

findings of a large-scale study in England (Küchemann & Hoyles, 2001-03) raised doubt about 

the possible role of age as the main determining factor of good understanding of proof: the study, 

which surveyed annually from the end of Year 8 to the end of Year 10 1512 high-attaining 

students (roughly 13- to 15-year-olds), showed that there were modest (if any) improvements in 

students’ understandings of proof over time.  Furthermore, mathematics education research at the 

elementary school level (e.g., Ball & Bass, 2003; Lampert, 2001; Maher & Martino, 1996; Reid, 

2002; Stylianides, 2007a, 2007b, 2007c; Zack, 1997), together with psychological research on 

the cognitive development of children’s ability for deductive reasoning (reviewed in Stylianides 

& Stylianides, 2008), suggested that some aspects of proof (as defined in Stylianides, 2007b, and 

used in this chapter) can be conceptually accessible even to young children and that classroom 

instruction has a crucial role to play in fostering good understanding of proof. 
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Specifically, the aforementioned mathematics education research indicated that, in 

supportive classroom environments, even young children are capable of writing proofs or 

developing standards of mathematical conviction that approximate acceptable standards in the 

mathematical community (see, in particular, Maher & Martino, 1996; Reid, 2002). As most of 

this research was conducted in classrooms of teacher-researchers or of teachers working closely 

with researchers, so the research was more about establishing what is possible rather than about 

documenting what typically happens in mathematics classrooms.  Indeed, as we will discuss next, 

proof has a marginal place in typical classroom practice. 

Proof in Typical School Classroom Practice: Place and Factors That Contribute to it 
 

We begin this section by examining the place of proof in typical K-12 school 

mathematics classroom practice and conclude that it is marginal.5  We then discuss different 

factors that seem to contribute to the marginal place of proof in typical school classroom practice.  

The Place of Proof in Typical School Classroom Practice 
  

There is limited research on the place of proof in typical classroom settings. Yet, some 

useful knowledge about the place of proof in secondary mathematics classrooms internationally 

comes from the findings of the 1994-1995 International Mathematics and Science Study Video 

Study (hereafter, TIMSS 1995 Video Study), the more recent 1998-2000 International 

Mathematics and Science Study Video Study (hereafter, TIMSS 1999 Video Study), and some 

smaller-scale studies. The TIMSS 1995 Video Study marked the first time when representative 

samples of teachers from three countries – the United States, Germany, and Japan – were 

videotaped teaching in secondary mathematics classrooms (Stigler & Hiebert, 1999). The TIMSS 

1999 Video Study sampled mathematics lessons in a larger number of countries: Australia, the 

Czech Republic, Hong Kong SAR, Japan, the Netherlands, Switzerland, and the United States. 
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Manaster (1998) reported an analysis of the content of the 90 lessons in the sample from 

the three countries that participated in the TIMSS 1995 Video Study. The analysis looked for 

explicit instances of mathematical reasoning in the lessons, i.e., instances in which mathematical 

reasoning was clearly stated and argued. Explicit mathematical reasoning was identified in only 

22 lessons. All but two of these lessons were in geometry, and all 22 lessons occurred in 

countries other than the United States. This almost total absence of explicit mathematical 

reasoning in beginning algebra courses suggested to Manaster that many students may be 

encouraged to approach algebra in an excessively procedural manner.  

Hiebert et al. (2003) analyzed the kinds of mathematical reasoning encouraged by the 

problems presented in the lessons of the TIMSS 1999 Video Study. A problem was counted as 

involving “a proof if the teacher or students verified or demonstrated that the result must be true 

by reasoning from the given conditions to the result using a logically connected sequence of 

steps” (p. 73). It was found that problems involving proofs were evident to a substantial degree 

only in Japan: about 39% of the Japanese lessons included at least one proof, and about 26% of 

the mathematical problems per lesson in Japan included proofs. The corresponding percentages 

for the other countries were significantly lower. 

The marginal place of proof in typical classrooms revealed by the two TIMSS Video 

Studies was consistent with the findings of two more recent and smaller-scale investigations, 

which also examined the place of proof in secondary school mathematics classrooms (Bieda, 

2010; Sears, 2012; Sears & Chávez, 2014). Bieda’s (2010) study included seven middle school 

mathematics teachers in the United States and is particularly revealing of the place of proof in 

school mathematics practice, because it examined the treatment of proof in what may be 

considered to be a best-case scenario: (1) the teacher participants were experienced and well 
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trained users of a textbook series; (2) prior analysis of the textbook series (Stylianides, 2009b) 

indicated that it was rich in proof-related tasks; and (3) the teachers were observed implementing 

lessons from the textbook series that were rich in proof-related tasks. About a third of the proof-

related tasks in the lessons that Bieda observed were either not implemented in the classroom or 

were only discussed in small groups. The proof-related tasks that were implemented in the 

classroom generated a number of opportunities for students to develop generalizations (including 

conjectures) and offer arguments to justify or refute them. Yet, in about half of these 

opportunities students did not provide any justification for their generalizations. In the rest of the 

opportunities the students frequently justified their generalizations with arguments that treated 

the general case but almost always fell short of meeting the standard of proof, or used arguments 

(mostly empirical) that did not treat the general case. The teachers in Bieda’s study did not seem 

to provide sufficient feedback to sustain discussions about students’ conjectures or justifications, 

and they were as likely to positively evaluate a non-proof argument as they were a proof. 

Sears (2012) and Sears and Chávez’s (2014) analysis focused on the place of proof in 

high school geometry courses, which are the courses traditionally associated with the teaching of 

proof in the United States. The analysis of the classroom practice of three teachers led to the 

following conclusions (Sears, 2012, pp. 201-203): (1) teachers were the mathematical authority 

in the classroom and students were generally encouraged to memorize the teachers’ solutions to 

proof tasks and subsequently follow their example when doing similar proofs; (2) most of the 

proof tasks related to known facts, which did not encourage students to consider individual cases 

or make conjectures; and (3) few opportunities were provided for students to understand the 

importance of doing proofs or make sense of the mathematics involved. These findings are not 

surprising as they are consistent with how proof has typically been treated in high school 
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geometry courses in the United States (see Stylianides, 2008b, for a historical account).  

Factors Contributing to the Marginal Place of Proof in Typical School Classroom Practice 
 

In this subsection, we discuss three possible factors that can account for the marginal 

place of proof in mathematics classrooms that we described above. 

The role of the teacher. Teachers make decisions about what proof-related tasks to 

implement in their classrooms and how to implement them, thereby playing a crucial role in 

students’ opportunities to learn mathematics in general and proof in particular. The weak 

knowledge about proof that many teachers have (e.g., Goulding et al., 2002; Harel, 2001; Knuth, 

2002a; Morris, 2002, 2007; Movshovitz-Hadar, 1993; Simon & Blume, 1996; Stylianides et al., 

2004, 2007), as well as teachers’ beliefs, predominantly counterproductive, about proof or the 

role of proof in students’ learning of mathematics (e.g., Bieda, 2010; Furinghetti & Morselli, 

2011; Knuth, 2002b; Sears, 2012), influence how teachers treat proof in their classrooms.  

The issues related to many teachers’ weak knowledge about proof were already discussed 

earlier. Regarding teachers’ beliefs about proof, Knuth (2002b) investigated 17 secondary school 

mathematics teachers’ conceptions of proof from their perspectives as teachers of mathematics. 

He found that “teachers tended to view proof … as a topic of study rather than as a tool for 

communicating and studying mathematics” (p. 61) and to consider proof “as an appropriate goal 

for the mathematics education of a minority of students” (p. 83). These views are consistent with 

those expressed by teachers in Bieda’s (2010) study discussed earlier. Specifically, those 

teachers tended not to consider proof-related tasks as being important and indicated skepticism 

of their students’ abilities to generate justifications and proofs. They also considered justification 

“as ‘something impressive’ or something for students who are developmentally ready” (p. 380).6 

These teachers’ beliefs cast some light on their decisions not to implement or discuss a large 
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number of the proof-related tasks in the observed lessons. A similar skepticism about students’ 

ability to productively engage with proof was also indicated in Sears’ (2012) study with high 

school geometry teachers. Teachers believed that proof is a difficult topic for students and 

explained, on that basis, their custom to encourage students to memorize teachers’ solutions to 

proof tasks and to follow the teachers’ example when doing similar proofs.   

Yet, even when teachers’ knowledge and beliefs are more attuned to teaching proof, there 

are other major obstacles that teachers face in trying to engage their students in proving. 

Stylianides, Stylianides, and Shilling-Traina (2013) described how three preservice elementary 

teachers in the United States tried to engage in proving the students in their mentor teachers’ 

classrooms. Unlike typical preservice elementary teachers, the three had good mathematical 

knowledge about proof and beliefs that were aligned with reform calls in the United States (e.g., 

NCTM, 2000) for teachers to make proving central to school mathematics as early as the 

elementary grades. They developed these knowledge and beliefs as a result of their participation 

in an intervention study with a focus on proving and problem solving (e.g., Stylianides & 

Stylianides, 2009b, 2014a, 2014b). Despite this supportive base of relevant knowledge and 

beliefs, however, the preservice teachers faced the following challenges when implementing 

proof-related activities in their classrooms: facilitating student work on the tasks without 

lowering the tasks’ cognitive demands, bringing together different student contributions during 

class discussions, managing time constraints, responding in the moment to students’ ideas during 

a lesson, and managing students’ preexisting habits of mind that were not attuned to reasoning 

mathematically. Cirillo (2011) reported similar findings from a longitudinal interpretive case 

study of the classroom experiences of a beginning secondary mathematics teacher. 
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The role of curricular resources. Another factor that plays an important role to the 

place of proof in typical classroom practice concerns the way proof is treated in curricular 

resources (or curriculum materials), i.e., materials that teachers use for planning and teaching 

(for elaboration on these terms see, e.g., Pepin & Gueudet, 2014; Remillard, 2005). Textbooks 

are the most commonly used kind of curricular resource, being used on average with 

approximately 75% of fourth- and eighth-grade students internationally (Mullis, Martin, Foy, & 

Arora, 2012). Indeed, research in this area showed that mathematics textbooks can have a 

significant influence on the choice and classroom implementation of mathematical tasks, 

including proving tasks (e.g., Bieda, 2010; Moyer, Cai, Nie & Wang, 2011; Tarr, Chávez, Reys, 

& Reys, 2006), and thus on students’ opportunities to learn (Cai, Ni, & Lester, 2011).  

Stylianides (2014, p. 64) discussed how appropriately designed school and teacher 

education textbooks can offer a leverage point for improving the place of proof in typical 

classroom practice. Regarding school mathematics textbooks, these could design rich 

opportunities for students to engage in proving in coherent and consistent ways, while the 

accompanying teacher guidebooks could offer advice to teachers about mathematical or 

pedagogical issues related to the classroom implementation of proving tasks. Regarding 

textbooks used in mathematics teacher education programs, these could help preservice teachers 

to develop (1) knowledge and beliefs that could productively support their teaching of proof and 

(2) strategies that could help them deal with the challenges likely to emerge in their teaching of 

proof (c.f. Cirillo, 2011; Stylianides et al., 2013).   

Unfortunately analyses of mathematics textbooks at the elementary school level (Bieda, 

Ji, Drwencke, & Picard, 2014), the secondary school level (e.g., Davis, Smith, & Roy, 2014; 

Fujita & Jones, 2014; Otten, Males, & Gilbertson, 2014; Stylianides, 2008c, 2009b; Thompson, 



	
  

	
   41 

Senk, & Johnson, 2012), and the teacher education level (McCrory & Stylianides, 2014) have 

collectively indicated three disappointing findings. First, there is a limited and inadequately 

conceptualized place of proof in school mathematics textbooks, in areas such as addressing 

common student misconceptions and sequencing and distributing proving tasks within and across 

grade levels. Second, there is inadequate support available in teachers’ guidebooks for teachers 

to implement proving tasks in the classroom, though we do acknowledge that it is an open 

question how this support should look like (for discussion, see: Cai & Cirillo, 2014; Stylianides, 

2008c). Third, there is a limited treatment of proof in textbooks used in mathematics teacher 

education programs (at least in the United States).  

The role of research. The previous discussion paints a bleak picture of the place of proof 

in typical school mathematics classrooms, especially in United States classrooms where most of 

the research has focused. This bleak picture is the case even in near optimal conditions, with 

highly qualified teachers and relatively supportive textbooks. Unfortunately, optimal conditions 

are uncommon and teachers often lack the knowledge or support to introduce proving tasks 

effectively. Also, the textbooks typically design few proving opportunities for students and 

provide little guidance for teachers to support students’ engagement with these opportunities. 

In addition to factors related to teachers and curricular resources, as discussed earlier, a 

third factor that contributes to the marginal place of proof in typical classroom practice is the 

limited research knowledge about how to change the current state of affairs. Specifically, 

research thus far has offered inadequate support to teachers, teacher educators, and curriculum 

developers (including textbook authors) about how they might address problems of practice in 

the area of proof. Also, as Cai and Cirillo (2014, p. 138) pointed out, we lack studies that explore, 

in connected ways: (1) the opportunities designed for students in mathematics curricular 
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resources to learn about proving; (2) the implementation of those opportunities in the classroom; 

and (3) students’ development of proving skills with the curricular resources used.  

Another way in which research could contribute more is by investigating how proof is 

treated in assessments (school, state, national, etc.). Although there have been studies that 

examined students’ performance on proof-related tasks in various assessments, especially the 

National Assessment of Educational Progress in the United States (e.g., Arbaugh, Brown, Lynch, 

& McGraw, 2004; Silver, Alacaci, & Stylianou, 2000), we are unaware of any studies that did a 

detailed examination of how proof is treated in those assessments. Given the importance that the 

school systems in many countries assign to students’ performance on tests, a more prominent 

place of proof in assessments could help increase the attention that proof receives in curricular 

resources and ultimately in the classroom. In relation to assessment, the field is also currently 

lacking well defined and consistent criteria that could be used both in the development of 

proving tasks and in evaluating students’ performance on those tasks (a separate set of criteria 

may be needed depending on the particular aspect of proof, or proving, one is interested in).7 

With the previous comments we do not mean to suggest that there is a total lack of 

research support about how to improve the place of proof in school mathematics classrooms. 

Most of the available research that discussed teaching practices rich in students’ engagement 

with proving, however, related to classrooms of teacher-researchers or teachers working in close 

collaboration with researchers (e.g., Ball & Bass, 2003; Lampert, 2001; Maher & Martino, 1996; 

Reid, 2002; Stylianides, 2007a, 2007b; Weber, Maher, Powell, & Lee, 2008; Zack, 1997), or 

involved the use of dynamic geometry environments (e.g., Arzarello, Olivero, Paola, & Robutti, 

2002; Baccaglini-Frank & Mariotti, 2010; de Villiers, 2004, 2012; Jones, Gutiérrez, & Mariotti, 

2000), which as we explained earlier is the focus of a different chapter in this Handbook. It is 
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still encouraging, though, to see that some researchers have shown how proof can be interwoven 

into students’ activities to advance students’ and teachers’ mathematical agendas. In the next 

section we discuss a number of research studies (both at the school and the university levels) that 

could help improve the place of proof in typical classroom practice.  

Classroom-based Interventions in the Area of Proof 
 

We begin our discussion of classroom-based interventions in the area of proof by 

clarifying our use of key terms, drawing on Stylianides and Stylianides (2013, p. 334). The term 

intervention denotes action taken to improve a situation in relation to the teaching and learning 

of mathematics, while the term classroom is used broadly to denote a formal learning setting at 

any level of education, from the elementary school to the university including teacher education. 

Stylianides and Stylianides (2013) observed that, although there have been notable examples of 

mathematics education research studies on classroom-based interventions since at least the 1930s 

(Fawcett, 1938), “the number of such studies is small and acutely disproportionate to the number 

of studies that have documented problems of classroom practice for which solutions are sorely 

needed” (p. 334). This observation applies to various areas of mathematics education research, 

and the area of proof is no exception. Yet, as we will discuss in this section, in recent years there 

has been an upsurge of studies on classroom-based interventions in the area of proof. These 

intervention studies would not have been possible without the studies that we reviewed in the 

previous sections, which offered: theoretical constructs and frameworks in the area of proof, a 

deep understanding of students’ and teachers’ difficulties with proof, and an appreciation of 

factors that contribute to the marginal place of proof in typical school classroom practice.  

The rest of this section is organized in two parts.  In the first we discuss in some detail six 

studies as examples of recent interventions in the area of proof. Our discussion of each of these 
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studies is more elaborated as compared to our typical discussion of studies in other parts of the 

chapter, which reflects the importance we assign to this emerging body of interventionist 

research in the area of proof. In the second part we refer briefly to few other relevant studies that 

we also consider important but are unable to discuss in detail due to space limitations, and then 

we discuss directions for future research on classroom-based interventions in the area of proof. 

Detailed Discussion of Selected Recent Classroom-based Interventions  
 

The six classroom-based interventions we discuss here were all satisfactorily successful 

in promoting their intended goals in the area of proof. Those by Mariotti (2000a, 2000b, 2013) 

and Jahnke and Wambach (2013) focused on secondary school geometry and lasted over 

extended periods of time (eight lessons or more). The other four focused on the university level. 

Harel’s (2001) intervention took place over a two-week period, whereas the interventions by 

Stylianides and Stylianides (2009b), Hodds et al. (2004), and Larsen and Zandieh (2008) were all 

of a much shorter duration (three hours or less).  

None of the six intervention studies fits fully within one of the three perspectives of 

proving we discussed earlier. This was to be expected as an intervention study normally needs to 

take into account a broad range of factors or goals that cut across perspectives. Yet, it is true that 

each intervention study comes closer to a particular perspective and less so to the others: 

Mariotti’s and Larsen and Zandieh’s studies come closer to proving as a socially-embedded 

activity, Hodd et al.’s study to proving as problem-solving, and the other three to proving as 

convincing. We begin with the two interventions that were conducted in secondary classrooms. 

Mariotti’s (2000a, 2000b) intervention belongs to a broader set of studies about proof in 

dynamic geometry environments (see, e.g., Jones et al., 2000). The intervention aimed to 

introduce 15- to16-year-old students in Italy to the deductive approach in geometry. It extended 
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over two years and drew heavily on the fact that the dynamic geometry environment used in the 

study, Cabri-Géomètre (hereafter, Cabri), enabled the creation of new systems of commands that 

allowed students to “construct a parallel between the world of Cabri constructions and geometry 

as a theoretical system” (Mariotti, 2000b, p. 263). The software tools initially available to the 

students corresponded to the straightedge and compass tools used in the traditional paper-and-

pencil environment. As the students developed different geometrical constructions (such as the 

angle bisector), the Cabri menu was expanded to include new commands (such as the “angle 

bisector” command) which then became theorems available for use in subsequent constructions. 

This progressive expansion of the Cabri menu paralleled, according to Mariotti, the enlargement 

of the theoretical system. Proof served a twofold role: (1) as a tool to ensure the validity of new 

constructions based on the available commands; and (2) as a key aspect of the social contract 

established in the classroom according to which constructions had to be justified and accepted by 

the classroom community before they became theorems. In a more recent publication, Mariotti 

(2013) elaborated on the crucial role of the teacher in exploiting Cabri’s potential to support 

students overcome key difficulties they faced as they attempted to make the transition from an 

intuitive to a more deductive approach to geometry. Critical aspects of the teacher’s role 

included purposefully organizing classroom activities and orchestrating whole-class discussions 

(along the lines discussed in Bartolini Bussi, 1996) around important mathematical content. 

Jahnke and Wambach’s (2013) intervention with eighth-grade students in Germany 

focused on the first element of the definition of proof we use in this chapter, namely, the “set of 

accepted statements,” and aimed to foster students’ understanding of the fact that the truth of 

mathematical statements is dependent on the hypotheses and axioms used to derive them. In 

other words, the intervention aimed to develop students’ understanding that a proof (or any other 
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kind of deductive argument) is based upon certain assumptions. The intervention, which 

extended over eight lessons in the domain of geometry, focused on a historical astronomical 

situation concerning the attempts of ancient Greeks to model the path of the sun, the so-called 

“anomaly of the sun.” The students were asked to put themselves in the position of the ancient 

astronomers and to assume that available to them were only the methods and tools that were 

known at the time. These restrictions in the methods and tools available to the students were 

similar to the restrictions imposed on the set of software tools available to the students in 

Mariotti’s (2000a, 2000b) study and were found to be an important contributing factor to 

students becoming more conscious of the role of assumptions in building a deductive theory.  

Stylianides and Stylianides (2009b) reported on an intervention that they developed in a 

four-year design experiment in an undergraduate mathematics course for preservice elementary 

teachers in the United States.  The intervention involved the implementation of a sequence of 

tasks and lasted less than three hours.  Its design relied heavily on two deliberately engineered 

cognitive conflicts (see Zaslavsky, 2005, pp. 299-300, for discussion of the origins of this notion) 

that motivated stepwise progressions in preservice teachers’ knowledge about proof. The 

progressions in preservice teachers’ knowledge culminated in them: (1) recognizing that 

empirical arguments of any kind, including Balacheff’s (1988a, 1988b) naïve empiricism and 

crucial experiment, offer insecure methods of validating mathematical generalizations; and (2) 

seeing an intellectual need (c.f. Harel, 1998, 2001; Zaslavsky, Nickerson, Stylianides et al., 

2012) to learn about secure validation methods (i.e., proofs). The study offered a promising way 

to begin to address the common misconception that empirical arguments are proofs. In addition, 

the theoretical framework and the instructional design that underpinned the intervention helped 

cast some light on how to address a well-documented tendency amongst students: to treat 
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contradictions as exceptions, thereby neither experiencing cognitive conflicts engineered by 

instruction nor engaging in a process of modifying their understandings so as to resolve the 

apparent contradictions. Similar to Mariotti’s (2000a, 2000b) study, the instructor in Stylianides 

and Stylianides’ (2009b) study (one of the researchers) played a crucial role in facilitating social 

interactions and in helping preservice teachers resolve the emerging cognitive conflicts and 

develop their mathematical knowledge (for elaboration on this aspect of the teacher’s role, see 

Stylianides & Stylianides, 2014b). An appropriately adapted version of the intervention was 

subsequently implemented with similarly promising results in a high attaining secondary 

mathematics classroom in England taught by the regular classroom teacher (Stylianides, 2009a; 

Stylianides & Stylianides, 2014b). The successful implementation of the intervention in a new 

cultural setting, with a different student population, and by a teacher who was not involved in the 

development of the intervention, offers further support to its design and theoretical underpinning.  

Harel (2001) reported on a two-week intervention that was part of a broader teaching 

experiment he conducted in an elementary number theory course for lower secondary preservice 

mathematics teachers. The goal of the teaching experiment was to document students’ 

justification schemes and their development during the course. The particular intervention aimed 

to teach proof by mathematical induction in a way that addressed what Harel described as two 

major deficiencies of traditional teaching of this proof method. The first deficiency is that the 

principle of mathematical induction is introduced to students in an abrupt manner that helps them 

see neither how the principle is born out of a need to solve specific problems nor how it is 

derived from knowledge the students already have. The second deficiency is that the problems 

used to introduce and develop students’ understanding of the principle of mathematical induction 

are typically exercises in algebra rather than problems that highlight the need for a recursive 
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argument. Harel’s intervention, and his teaching experiment more broadly, were based on a 

system of pedagogical principles (for details on those principles, see Harel, 2010). According to 

Harel (2001, p. 206), the most important finding of his intervention study was that “students 

changed their current ways of thinking, primarily from mere empirical reasoning – in the form of 

result pattern generalization – into transformational reasoning – in the form of process pattern 

generalization.” The two different kinds of generalization correspond to two distinct ways of 

thinking about patterns: in the first students focus on regularity in the process of producing a 

pattern, whereas in the second they focus on regularity in the result. 

Hodds et al. (2014) reported on a series of experiments they conducted with 

undergraduate mathematics students to study the effect of self-explanation training on students’ 

proof comprehension. The training was based on an earlier study by Inglis and Alcock (2012) in 

which the researchers confirmed using eye-tracking technology two previous findings about 

undergraduate students’ proof comprehension strategies (the first finding was by Selden and 

Selden, 2003, and the second by Weber, 2010a): In comparison to expert mathematicians, 

undergraduate students (1) focused considerably more on algebraic features of proofs and less on 

surrounding text in which logical claims are often made explicit, and (2) read in a more linear 

manner and made fewer eye movements between the lines of a proof in search of logical 

relationships. The training in Hodds et al.’s intervention aimed to make progress in addressing 

the aforementioned limitations in undergraduate students’ proof comprehension strategies by 

focusing students’ attention on logical relationships within a proof. Following the positive 

findings of two experiments under lab conditions, the research team investigated the effect of 

self-explanation training in a genuine pedagogical setting which showed a similar positive effect 

that persisted for at least three weeks. Hodds et al. highlighted the following features of their 



	
  

	
   49 

intervention: (1) the self-explanation training is generic and (2) the training takes less than 20 

minutes of individual study. These features are indeed key to the implementation of the 

intervention in the teaching and learning of proof of other undergraduate mathematics students. 

According to Stylianides and Stylianides (2013, p. 338) such features can help address major 

obstacles that classroom-based interventions in mathematics education typically find on their 

way to “scaling up”: many of these interventions have long duration and require a substantial 

commitment from practitioners such as to change their curricula or “reform” their practices. 

Larsen and Zandieh’s (2008) study is somewhat different from the interventions we have 

reviewed thus far in the sense that its goal was to make and illustrate a theoretical point that has 

practical implications. Yet, the study could also be viewed as an intervention and this is the lens 

through which we discuss it here. Another reason for including this study in our review is that it 

helps illustrate a set of studies related to proof that explored the utility of the theory of Realistic 

Mathematics Education (RME) for supporting the learning of undergraduate mathematics (e.g., 

Rasmussen & King, 2000; Zandieh, Larsen, & Nunley, 2008). Larsen and Zandieh’s (2008) 

study focused on one classroom episode that took place in a university introductory group theory 

course, taught by Larsen and taken primarily by third year mathematics majors. The design of 

the course drew heavily on ideas from RME, including Freudenthal’s (1991) notion of guided 

reinvention. As Gravemeijer and Doorman (1999, p. 116) explained, the emphasis in guided 

reinvention “is on the character of the learning process rather than on invention as such,” with an 

important idea being “to allow learners to come to regard the knowledge they acquire as their 

own private knowledge, knowledge for which they themselves are responsible.” The focus of the 

study was “to explore the utility of recasting Lakatos’ (1976) methods of mathematical discovery 

as heuristics for designing instruction that supports students’ reinvention of mathematics” 
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(Larsen & Zandieh, 2008, p. 206). The students in the course worked with definitions and 

conjectures that were not fully understood by them or were sometimes intentionally imprecisely 

formulated by the instructor, much like the historical mathematical environments described by 

Lakatos. As a result, students sometimes simultaneously arrived with a proof and a 

counterexample to a conjecture. Larsen and Zandieh’s study illustrated how students used this 

apparent paradox to clarify the definition of a concept, refine the conjecture, or analyze the proof 

for hidden assumptions, which motivated the construction of new mathematical knowledge. In 

this sense, the production and analysis of arguments (even invalid ones) played an integral role in 

the creation and modification of concepts, definitions, and conjectures. To conclude, Larsen and 

Zandieh’s (2008) study, together with Weber et al.’s (2008) study we will discuss next, 

illustrated that in carefully designed learning environments children and university students can 

engage with proving in ways that can also deepen their understanding of mathematical concepts.	
  	
  

Other Classroom-based Interventions and Directions for Future Research 
 

Due to space limitations we could not discuss more intervention studies to the same level 

of detail as we discussed the six studies in the previous section. For more comprehensiveness, we 

refer briefly to other relevant studies that we also consider important, including some older 

studies that have been influential. We finish with some directions for future research on 

classroom-based interventions in the area of proof. 

Other classroom-based interventions. As we explained earlier, it is unlikely that any 

intervention study would fit fully within a particular perspective of proving, but it is nevertheless 

possible to say that a study comes closer to a particular perspective as compared to the other two. 

Mariotti’s (2000a, 2013) and Larsen and Zandieh’s (2008) studies were presented earlier as 

examples of interventions that come closer to the perspective of proving as a socially-embedded 
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activity. Some other examples of intervention studies within the same perspective include the 

following: Perry, Samper, Camargo, Molina, and Echeverry (2009) who carried out a similar 

intervention as Mariotti in a plane geometry course, but with preservice secondary mathematics 

teachers; Alibert and Thomas (1991) who described the norms that a calculus class negotiated to 

settle mathematical arguments aligned with the standards of proof in the mathematical 

community; and Goos (2004) who illustrated how a teacher established norms and practices that 

invited high school students to participate in proof.   

Hodd et al.’s (2014) study comes closer to the perspective of proving as problem-solving. 

In some other intervention studies within the same perspective researchers attempted to directly 

teach students processes and heuristics that they believed would lead to successful proof-writing 

(Anderson, Corbett, Koedinger, & Pelletier, 1995; Weber, 2006; see also Schoenfeld, 1985, who 

included proof-writing in mathematical problems that he helped students learn how to solve). 

The study by Anderson et al. (1995) discussed the Geometry Tutor (Anderson, Boyle, & Yost, 

1986), a program that helped students master proving processes in geometry classrooms, with 

students’ ability to write proofs improving by more than a standard deviation. 

The other three studies we discussed earlier (Harel, 2001; Jahnke & Wambach, 2013; 

Stylianides & Stylianides, 2009b) come closer to the perspective of proving as convincing. 

Brown’s (2014) study with undergraduate mathematics and science students is another example 

of a study within the same perspective. Brown used some similar tasks to those described in 

Stylianides and Stylianides (2009b) to investigate potential pathways students can follow in 

developing skepticism towards empirical evidence as a basis for validation of generalizations, 

while still being able to use empirical explorations to gain confidence and develop ideas for a 

proof. It is also worth noting that, in addition to Harel’s (2001) study that we reviewed earlier, 
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there are more intervention studies that focused in the particular area of proof by mathematical 

induction (e.g., Brown, 2008; Ron & Dreyfus, 2004). 

Directions for future research. Our discussion in the chapter covered many problems of 

classroom practice in the area of proof. As a field, we have a good theoretical and empirical 

research basis to take up the challenge of seeking solutions to more of these problems than we 

have done thus far. The possibilities for future research on classroom-based interventions in the 

area of proof are limitless at this point. For example, virtually every issue we discussed in the 

previous section, about weaknesses in students’ or teachers’ understandings of proof, calls for 

the design of an intervention that would aim to address it.  

The intervention studies we discussed earlier have taken a step towards addressing some 

open problems in the teaching and learning of proof. Beyond the specific issues targeted by these 

interventions, the research knowledge they produced can also be useful in addressing other 

related issues. For example, the research knowledge acquired from Mariotti (2013) and 

Stylianides and Stylianides (2009b, 2014b) about the role of the instructor in facilitating class 

discussions in the area of proof could be instrumental in the design of a new intervention that 

would aim to help preservice teachers in managing similar classroom discussions. Indeed, 

successfully orchestrating class discussions is a major challenge not only for preservice teachers 

who enact proof-related tasks in particular (Stylianides et al., 2013) but also for other teachers 

who enact challenging tasks more broadly (Stein, Engle, Smith, & Hughes, 2008).  

Existing research on classroom-based interventions has barely scratched the surface of 

few of the open problems in the teaching and learning of proof. Below we offer three examples 

of issues that we consider particularly important for future research to address. 
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• There are several intervention studies that focused in the particular area of proof by 

mathematical induction (e.g., Brown, 2008; Harel, 2001; Ron & Dreyfus, 2004). Other proof 

methods, however, such as proof by contradiction, contraposition, and counterexample have 

not received similar attention in the literature. Developing students’ ability to refute 

mathematical claims or to show that acceptance of (the negation) of an assertion leads to a 

contradiction, is important, especially in reform-oriented classrooms where students are 

encouraged to make conjectures or to engage in discussion and debate the truth of 

mathematical ideas (e.g., Ball & Bass, 2003; Zack, 1997; Weber et al., 2008). In developing 

such interventions it would be useful to try and design them in ways that could allow their 

use to address, concurrently or separately, with some adaptation, student difficulties with 

related proof methods such as proofs by contraposition and contradiction (see Antonini & 

Mariotti, 2008). This would not only help achieve efficiency in the teaching of proof methods, 

but would also help students make connections between those methods and better understand 

each method’s domain of application. A possible way forward in designing such 

interventions might be to explore whether and how key features of existing interventions on 

proof by mathematical induction might be applied in the teaching and learning of other proof 

methods. One such feature might relate to Harel’s (1998, 2010) notion of “intellectual need,” 

which was key both to Harel’s (2001) intervention on addressing student difficulties related 

to mathematical induction and Stylianides and Stylianides’ (2009b) intervention on 

addressing the student misconception that empirical arguments are proofs. 

• Research at the school level on the teaching of the axiomatic structures of mathematics 

(which includes research on the notions of axioms, assumptions, definitions, theorems, etc.) 

has focused almost exclusively on the domain of secondary school geometry and, frequently, 
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in the context of dynamic geometry environments (e.g., Boero et al., 2007; de Villiers, 1998; 

Jahnke & Wambach, 2013; Mariotti, 2000a, 2000b) though there is also some research at the 

elementary school level (Stylianides, 2007a). The approaches used by researchers to engage 

students in the axiomatic structures presented both similarities and differences. A notable 

difference in some studies relates to whether the starting point of students’ engagement 

should be particular axioms and definitions, or problems that can raise the need for such 

axioms and definitions. Is one approach preferable to the other? If so, in what kind of 

instructional settings and in the service of which learning goals? Is it possible to develop a set 

of principles about engaging students in the axiomatic structures of mathematics that would 

apply in various mathematical domains (algebra, geometry, etc.) and at various levels of 

education? Would the same set of principles apply to both technological and non-

technological environments?  

• There is a great need for interventions to introduce students of different ages to an 

appropriate set of criteria for judging whether an argument meets the standard of proof. For 

consistency and coherence in students’ learning of proof at different levels of education and 

in different mathematical domains, this set of proof criteria would have to be sufficiently 

elastic to be adapted to students’ current level of mathematical knowledge but without 

compromising mathematical accuracy or students’ future learning of mathematics. Unless the 

field designs effective ways to instill in students expandable as well as developmentally and 

mathematically appropriate views of what a proof means, it is unrealistic to expect that 

students will make sustained progress in their learning of proof during their mathematical 

education. The definition of proof we use in this chapter (Stylianides, 2007b), which was 

originally formulated for use by researchers, has subsequently been adapted and used with 
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secondary students (Stylianides & Al-Murani, 2010, pp. 23-24) and preservice elementary 

teachers (Stylianides & Stylianides, 2009a, pp. 242-243) but not yet with elementary students. 

Similar adaptations may also be possible with alternative definitions of proof.  

A common theme in the previous discussion had to do with the development of principles 

or criteria for particular aspects of the teaching of proof (e.g., principles about teaching different 

proof methods, principles about teaching axiomatic structures, criteria about the meaning of 

proof) that could be used and tested in various mathematical domains and at various levels of 

education. In other words, we are setting forth a vision for the development of a unified 

instructional basis for the teaching of proof. One might argue that searching for such an 

instructional basis is a chimera, but we think the challenge is worth the effort. Even a small 

progress in this area would be a major breakthrough and could contribute to the beginning of an 

ambitious effort for systemic improvement of students’ learning of proof.     	
  

Conclusion 
 

Research on proof is growing rapidly and this reflects the importance attributed to proof 

in mathematics education.  Taking stock of major achievements of this body of research thus far, 

we note that there is: (1) a good number of well developed theoretical frameworks casting light 

on different aspects of the teaching and learning of proof at various levels of education; (2) a 

rather extended knowledge base about how students understand (typically misunderstand) proof; 

(3) a good knowledge base about the current, largely marginal, place of proof in typical school 

mathematics classroom practice; and (4) a relatively small number of research studies that have 

developed promising classroom-based interventions to address important issues of the teaching 

and learning of proof.  Accordingly, the bulk of research thus far has focused more on examining, 
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documenting, and understanding the processes underpinning different problems of classroom 

practice in the area of proof and less on acting upon such problems to generate possible solutions. 

We argue that an important step forward would be, then, for the field to capitalize on the 

robust foundation offered by prior theoretical and empirical work in order to refine existing or 

design new interventions to alleviate some of the many problems of classroom practice in the 

area of proof.  In order for such interventions to be of most use to the field, they would need to 

be not only successful in promoting their intended learning outcomes, but also well theorized 

thus illuminating the mechanisms of success (Stylianides & Stylianides, 2013).  Indeed, by 

clearly articulating the theoretically essential components (Yeager & Walton, 2011, p. 288) of an 

intervention, i.e., the aspects of the intervention presumed to engineer or support the intended 

learning outcomes, we can enhance the potential of the intervention to be adapted and applied in 

classrooms other than those that were used for its development. A longer-term goal can be to 

seek ways to scale up (Coburn, 2003) promising interventions, thus coming closer to realizing 

the vision of giving access to learning opportunities with proof to a larger number of students.  

Well designed educative curricular resources, i.e., resources that aim to promote teacher 

learning alongside student learning (e.g., Ball & Cohen, 1996; Davis, Palincsar, & Arias, 2014; 

Davis & Krajcik, 2005; Stylianides, 2008c), have a major role to play in supporting broad 

dissemination of promising interventions, thus also partly addressing the enduring problem of the 

large variation in the quality of learning opportunities offered to students in different classrooms 

(Morris & Hiebert, 2011; Stylianides & Stylianides, 2014b). Of course we do not underestimate 

the difficulties involved in pursuing such an ambitious research agenda in the area of proof, but 

we nevertheless believe that the field is now well positioned to take up the challenge.  
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Notes 
 

1 Our use of the terms “misunderstandings” or “misconceptions” is intended to designate views that deviate from 

conventional knowledge.  We consider students’ (mis)understandings or (mis)conceptions as both starting points 

and resources for cognitive growth (e.g., Smith, diSessa, & Roschelle, 1993). 

2 We deliberately did not elaborate in this chapter on issues related to proof in dynamic geometry environments, 

because such issues are discussed in the chapter on geometry in this volume.   

3 Schoenfeld (1980) highlighted using proof by contradiction to prove statements such as “If 2p-1 is prime, then p is 

prime” as an instance of a shared heuristic used in problem solving. 

4 To avoid misinterpretation, we are not saying that syntactic proof productions or proofs based on a procedural idea 

are primarily instances of the formal-rhetorical parts of proving. Even if one writes a proof solely by making logical 

deductions, there can be substantial decision-making, intuition, and creativity in choosing which deductions to make. 

5 Proof plays a greater role in upper-level university mathematics courses, which are typically taught in a 

“definition-theorem-proof” format (Weber, 2004). In those courses, proof can be considered as the most common 

pedagogical explanation provided to students (Lai, Weber, & Mejia-Ramos, 2012), with some estimating that about 

half of a lecture in advanced mathematics is comprised of the instructor presenting proofs (Mills, 2011). An account 

of mathematics instructors’ teaching is beyond the scope of this chapter, but Nardi (2008) gave an extended analysis 

of a focus group of mathematicians discussing their teaching and a fairly recent review of the relevant literature is 

found in Fukawa-Connelly (2012a). 

6 It is interesting to note that mathematics professors make similar claims about mathematics majors. In three 

separate interview studies with mathematics professors on the teaching of proof at the university level, participants 

indicated that they felt that some mathematics majors simply were not capable of understanding proof (Alcock, 

2010; Harel & Sowder, 2009; Weber, 2012). This led some mathematicians in these studies to question whether 

proof was an appropriate goal for all mathematics majors. 

7 Paolo Boero made a similar point at the “Argumentation and Proof” Thematic Working Group of the 9th Congress 

of European Research in Mathematics Education (Prague, Czech Republic, 4-8 February, 2015). 
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