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Abstract 

It is widely accepted by mathematics educators and mathematicians that most proof-oriented 

university mathematics courses are taught in a “definition-theorem-proof” format. However, there 

are relatively few empirical studies on what takes place during this instruction, why this 

instruction is used, and how it affects students’ learning. In this paper, I investigate these issues 

by examining a case study of one professor using this type of instruction in an introductory real 

analysis course. I first describe the professor’s actions in the classroom and argue that these 

actions are the result of the professor’s beliefs about mathematics, students, and education, as 

well as his knowledge of the material being covered. I then illustrate how the professor’s teaching 

style influenced the way that his students attempted to learn the material. Finally, I discuss the 

implications that the reported data have on mathematics education research.  

 

 

 



1. Introduction 

In the last two decades, there has been a tremendous growth in educational research on 

advanced mathematics courses, i.e. upper-level proof-oriented mathematics courses at the 

university level. There have been many studies on individuals’ learning and understanding of 

advanced mathematical concepts (e.g., Davis and Vinner, 1986; Tall, 1991; Pinto and Tall, 1999) 

and other reports on the nature of the concepts themselves (e.g., Sfard, 1991; Lakoff and Nunez, 

2000; Dubinsky and McDonald, 2001). However, there has been comparatively little research on 

the teaching of advanced mathematical courses. Much of the published research on this topic 

consists of researchers’ suggestions for how the pedagogy in advanced mathematics courses 

could be improved (e.g., Alibert and Thomas, 1991) and assessments of this novel pedagogy 

(e.g., Dubinsky et. al., 1994; Cottrill et. al., 1996), while there have been relatively few studies on 

how advanced mathematical courses are actually taught. The purpose of this paper is to describe 

the teaching used in one such course. 

In this paper, I provide a detailed analysis of one professor’s teaching in an introductory 

real analysis course. This paper has the following specific aims: 

1. To describe in detail the teaching styles of this professor using traditional instruction in the 

advanced mathematical classroom. 

2. To offer insight into why the professor taught using the methods that he did. 

3. To describe students’ resulting learning after receiving this instruction 

4. To discuss what consequences the results of this paper might have on the directions of future 

mathematics education research. 

1. 1.   Factors influencing the actions of teachers 

There is a large body of literature on the teaching of mathematics at the pre-college level. 

This research indicates that mathematics teachers’ practices are dependent upon a multitude of 

factors, including their understanding of the mathematics that they are covering, their pedagogical 

content knowledge, their short-term and overarching goals for the course, their beliefs about 



mathematics, and their beliefs about how students learn (e.g., Schoenfeld, 1999). In short, the 

actions that a teacher will invoke in the classroom are dependent upon a complex constellation of 

knowledge, skills, goals, and beliefs. Hence, understanding a teacher’s actions in the classroom 

requires understanding their goals, beliefs, and so on. 

1. 2.   Research on teaching of advanced mathematics courses 

It is widely accepted that advanced mathematics courses are frequently taught in what is 

colloquially referred to as a “definition-theorem-proof” (DTP) format. Davis and Hersh (1981) 

assert that "a typical lecture in advanced mathematics … consists entirely of definition, theorem, 

proof, definition, theorem, proof, in solemn and unrelieved concatenation" (p. 151). Dreyfus 

(1991) claims that although mathematics instructors may be aware that new mathematics is 

created through non-rigorous processes, this “does not usually prevent him or her from almost 

exclusively teaching the one very convenient and important aspect which has been described 

above, namely the polished formalism, which so often follows the sequence theorem-proof-

application” (p. 27). 

While many authors write that mathematics courses are taught in the way that I described 

above, I am not aware of a precise set of criteria that one can use to define DTP instruction. 

However, it appears that this traditional paradigm has the following characteristics:  The 

instruction largely consists of the professor lecturing and the students passively taking notes, the 

material is presented in a strictly logical sequence, the logical nature (e.g., formal definitions, 

rigorous proofs) of the covered material is given precedent over its intuitive nature, and the main 

goal of the course is for the students to capable of producing rigorous proofs about the covered 

mathematical concepts. 

Despite being the dominant mode of teaching advanced mathematics for many decades, 

the DTP format has been widely maligned by mathematicians and mathematics educators alike 

(e.g., Kline, 1977; Davis and Hersh, 1981; Leron, 1985; Alibert and Thomas, 1991; Thurston, 

1994; Leron and Dubinsky 1995). Both groups argue that DTP instruction intimidates students 



(Kline, 1977; Thurston, 1994), gives students a misleading view about the nature of mathematics 

(Dennis and Confrey, 1996), hides much of the processes that are used in mathematical reasoning 

(Davis and Hersh, 1981; Dreyfus, 1991), and denies students the opportunity to use their intuition 

when reasoning about these concepts (Fischbein, 1982; Dreyfus, 1991). Constructivists argue that 

one reason traditional instruction is ineffective is that simply “telling students about mathematical 

processes, objects, and relations in not sufficient to induce meaningful learning” (Leron and 

Dubinsky, 1995).  Arguably the most serious criticism against DTP instruction is that students 

learn far less that we would like when we teach in this way (Leron and Dubinsky, 1995). Perhaps 

in response to this dissatisfaction with traditional teaching methods, many researchers have 

offered alternative paradigms for teaching advanced mathematical courses (e.g., Alibert and 

Thomas, 1991).  

 In this paper, I analyze one teacher’s DTP-style instruction in an introductory real 

analysis course. The purpose of this paper is neither to praise nor criticize the teacher’s pedagogy; 

likewise, I do not wish to advocate or critique the use of the DTP approach in proof-oriented 

courses. Rather the purpose of this paper is to present an analysis of this instruction itself. One 

goal of this article is to offer a more precise description of what occurs in the advanced 

mathematical classroom. A second goal is to discuss why the professor chose to teach the class in 

the way that he did. 

 

2.   Research context and methods 

2. 1.   Research context 

 The research in this paper took place in the context of an introductory real analysis course 

taught at a regional university in the southern United States. 16 students enrolled in this course; 

15 of these students were junior or senior mathematics majors and one student was a graduate 

mathematics student who had not completed a similar course as an undergraduate. The textbook 

for the course was Kirkwood’s An Introduction to Real Analysis (1995) and the course covered 



chapters 1.1 through 4.1. Topics covered in the course included sets, functions, proof by 

induction, limits of sequences, the topology of the real line, limits of functions, continuity, and 

uniform continuity. The course met for 75 minutes twice a week over the course of a 15-week 

semester. 

2. 2.   The teacher 

The course was taught by Dr. T (a pseudonym). In many respects, Dr. T was highly 

qualified to teach this type of course. Dr. T had 12 years experience as a faculty member at the 

university where this study took place, and he had taught this specific course three times before. 

He had recently been awarded a major university teaching award. His Ph.D was in real analysis 

and he had published research papers in this field.  

2. 3.   Data collection 

The data from this study was collected from two sources. The first source of data came 

from my weekly meetings with Dr. T. During these meetings, Dr. T discussed what he hoped to 

accomplish in the upcoming weeks and he explained why he taught the previous week’s lectures 

in the way that he did. The second source of data came from the classes themselves. I observed 

and recorded field notes for each of Dr. T’s lectures. 

2. 4.   Data analysis 

The data were analyzed using a form of theory construction in the style of Strauss (1987) 

and Strauss and Corbin (1990). Originally, Dr. T’s lectures were to be categorized as ‘formal’ or 

‘informal’. However, as the semester progressed, it became apparent that the level of formality in 

Dr. T’s lectures was only of secondary importance. More critical was the way Dr. T described the 

interaction between formal and informal thought, and the skills that he emphasized when he was 

presenting proofs. As a result, the categorizations were re-evaluated and revised to ‘logico-

structural’, ‘procedural’, and ‘semantic’. The result of this process is a set of categorizations that 

are grounded to fit the available data. 

 



3. Results 

3. 1.   General observations 

 Dr. T’s lectures had many of the characteristics that one would expect from traditional 

“definition-theorem-proof” instruction. Most of the lectures consisted of Dr. T writing 

definitions, examples, proofs, and occasionally diagrams on the blackboard and the students 

studiously copying Dr. T’s writing into their notebooks. Students asked questions only 

infrequently and rarely participated in class discussions. Students’ homework assignments and 

exams asked them to recall definitions, use these definitions to derive relatively straightforward 

inferences (e.g., give an example of a set that does not include its least upper bound, find the 

closure of the set {1, 1/2, 1/3, …}), and construct basic proofs. 

 One feature of Dr. T’s instruction that may differ from traditional instruction was the 

manner in which he presented proofs to the class. Rather than present proofs as a linear set of 

logical deductions, he continuously strove to illustrate the reasoning behind the proofs so that the 

students could produce similar proofs themselves (cf., Weber, 2002). 

Despite the traditional nature of Dr. T’s instruction, his lecture styles were not uniform. 

In the following sub-section, I will describe three distinct teaching styles that Dr. T used 

throughout the semester. In the subsequent section, I will discuss why he employed the teaching 

methods that he did. Before doing so, there are other general characteristics of Dr. T’s lectures 

that are worth noting. Dr. T’s lectures were uncommonly well-organized and precise; throughout 

his lectures, he was never at a loss for words and he rarely made a mistake. He was also very 

enthusiastic about the course and displayed a genuine concern for the students and their learning. 

Perhaps as a result of these factors, Dr. T was popular with the students and earned high student 

evaluations at the end of the course. 

3. 2.   Teaching styles 

3. 2. 1.   A logico-structural teaching style- the case of sets and functions 



Typical demonstration of a proof using a logico-structural style 

 In the second week of the course, Dr. T asked the class to consider the following 

statement: 

f(A∪B) ⊆ f(A)∪f(B) 

 He presented its proof in the following manner: 

Dr. T: So we are asked to prove things about f(A), f(B), and f(A∪B). When we are asked to write 

a proof about a group of objects, it is always helpful to have a clear understanding of precisely 

what these objects mean. So I’m going write down what these things actually mean. I’m going to 

write it over here as scratch work. 

[On the right side of the board, Dr. T writes “Scratch work”.] 

Dr. T: From our definitions, f(A) is the set of elements mapped to by an element of A. 

[Underneath ‘scratch work’, Dr. T writes f(A) = {f(x)| x∈A}] 

Dr. T: And likewise, f(B) is the set of elements mapped to by an element of B. 

[Writes f(B) = {f(x)| x∈B}] 

Dr. T: And we also have this. 

[Writes f(A∪B) = {f(x)| x∈ A∪B}] 

Dr. T: OK, to prove this statement, we always need to start with y as a member of f(A∪B) and we 

need to show that this y is a member of f(A) union f(B). 

[On let left side of the board, Dr. T writes “Proof”. Below this, he writes “Assume y ∈ f(A∪B)”. 

Near the bottom of this board, he writes “y ∈ f(A) ∪ f(B)”. The written work on the board thus 

far is presented in Figure 1]. 

*** Insert Figure 1 About Here *** 

Dr. T: What does it mean to be in there [alluding to f(A) ∪ f(B)]? To answer that, I have to 

decipher y is in f(A) ∪ f(B). This means that either there is an x in A such that y is equal to f(x) 

or there is an x in B such that y equals f(x). 



[Above the bottom line in the proof, Dr. T writes “Either there is x ∈ A such that y = f(x) or there 

is an x ∈ B such that y = f(x).] 

Dr. T: So this is what we need to show. It is always helpful to know exactly what you need to 

show. Sometimes, once you figure out what you need to show, you’ve already done most of the 

work for the proof. Let’s look at our assumption, y is a member of f(A∪B). Let’s decipher this to 

see what it really means. y is a member of f(A∪B) means there is an x in A∪B so that f(x) = y. 

[Below the line “Assume y ∈ f(A∪B)”, Dr. T writes “Let x ∈ A∪B so that y = f(x)”]. 

Dr. T: So if x is in A∪B, then x is in A or x is in B. So this is what we needed to show. We’ve 

shown that either there is an x in A such that y = f(x) or there is an x in B such that y = f(x). 

[In the middle of the proof, Dr. T writes “Since x ∈ A∪B, x ∈ A or x ∈ B”. The completed proof 

that Dr. P produced is presented in Figure 2]. 

*** Insert Figure 2 About Here *** 

Dr. T: So let’s look at we’ve shown that if we have y ∈ f(A∪B), then there is an x in A∪B so that 

f(x) = y. Since x is in A∪B, x is a member of A or a member of B. So either there is an x in A so 

that f(x) = y or there is an x in B so that f(x) = y. If the x is in A, y is in f(A). If it is in B, y is in 

f(B). So y is in f(A) ∪ f(B). So we’ve shown [pointing to the top of the proof], if y is a member of 

f(A∪B), then y is a member of f(A) ∪ f(B) [now pointing to the bottom of the board]. This is 

exactly what we need to do to show that f(A∪B) is a subset of f(A) ∪ f(B). 

[At the very bottom of the board, Dr. T writes “Since if y ∈ f(A∪B), then y ∈ f(A) ∪ f(B), 

f(A∪B) ⊆ f(A) ∪ f(B).”]. 

Short-term goals of a logico-structural style 

 The day before Dr. T presented the proof described above, I met with him to discuss his 

goals for his upcoming lectures. In the lecture prior to this meeting, Dr. T had his class complete 

a quiz testing their basic logical skills. (On the quiz were questions like “Negate the following 



sentence: Every car in the parking lot is red”). Dr. T expressed dissatisfaction at students’ 

performance on this quiz and wondered how they would be able to construct proofs if their 

logical skills were so weak. He stated, “I first want students to understand the logic of proofs 

before we prove anything meaningful”. Later he added, “I would like the students to all have a 

common core of experience of proving things when it is fairly easy. I don’t want proofs to 

discourage them. I want them to be comfortable with proofs before they get lost.”  

Characteristics of a logico-structural style 

 During the first lectures of the course, Dr. T continuously stressed the importance of 

carefully using the definitions to understand how to begin and conclude a proof. For instance, one 

of his in-class comments was “A guiding principle when writing these proofs is to write down 

what we have and where we are headed. Many of these proofs are really just a matter of 

following through the definitions until we reach the conclusion.” Later, he told the class, “Now it 

is certainly not the case that you can do every proof in this course just by writing down the 

definitions and following them through until we reach the conclusion. However, it certainly is the 

case that doing this can take you a long way on many of the problems. And it is certainly the case 

that if you do not know where you are starting and where you are going, then you probably will 

not produce a correct proof”. 

 The proofs that Dr. T presented about set theoretic topics were similar to the one 

described earlier in this section. Dr. T would start out by writing the definitions of the terms in the 

statement to be proven on the side of the board as scratch work. Next, he would list his 

assumptions at the top of the blackboard and stating his desired conclusion at the bottom. He 

would then draw inferences primarily by unpacking the definitions of the concepts involved, 

proceeding down from his assumptions and up from his conclusions. This process would continue 

until he met in middle and had constructed a proof. Afterward, Dr. T would go through his 

written work linearly, explaining why his proof was logically sound. 



 There are other characteristics of this instruction that are worth noting. Diagrams rarely 

accompanied Dr. T’s proofs when teaching in a logico-structural style; he did not produce a set 

theoretic diagram until his third lecture on the topic and in this case, he produced only a single 

diagram. He did not produce any diagrams at all when using this lecture style to discuss the 

axioms of the real line, the completeness axiom, or the Archimedean property of real numbers. 

Finally, the semantic meaning of the concepts and proofs were not discussed. Concepts were not 

covered beyond stating their definitions, and the summaries that he gave of his completed proofs 

were solely used to establish the proofs' logical veracity. 

3. 2. 2. A procedural teaching style- the case of limits of sequences 

Typical demonstration of a proof using a procedural style 

 In the fifth week of the course, Dr. T asked the class to consider the following statement: 

limn→∞ (n+1)/n = 1 

 He presented the proof in the following manner: 

[Dr. T begins his proof on the left side of the board by writing: “Let ε > 0. Let N =”. Below this, 

Dr. T writes “If n > N, then |(n + 1)/n – 1|”. At this point, he leaves and extended gap and writes 

“< ε.” Below this, he writes “Since n > N implies that |(n+1)/n – 1| < ε, limn→∞ (n+1)/n = 1.” His 

work to this point is presented in Figure 3.] 

*** Insert Figure 3 About Here *** 

Dr. T: So this proof has the usual structure. We start with an ε greater than zero. We need to find 

an N that makes this inequality true. We’ll find this N by scratch work. We need to make this 

inequality less than ε. 

[On the left side of the board, Dr. T writes “Scratch work”. Under this he writes “|(n+1)/n – 1|”, 

leaves an extended gap, and then writes “< ε”.] 

Dr. T: So what does this simplify to? The left hand part simplifies to 1 minus 1 over n, so we 

have… 



[Next to “|(n+1)/n – 1|”, Dr. T writes “= |1 + 1/n – 1| = |1/n|”]. 

Dr. T: The absolute value of 1/n is just going to be 1/n, since we are only dealing with the 

positive integers, so we have this. 

[Dr. T writes “= 1/n”.] 

Dr. T: Since we are assuming n is greater than N, we know that 1/n is less than 1/N. 

[Dr. T writes “< 1/N”. His written work until this point is presented in Figure 4.] 

*** Insert Figure 4 About Here *** 

Dr. T: So we need to show that this is less than ε. We know that 1/N will be less than ε when N is 

greater than 1/ε. How can we do that? [posing question to the class]. How do we know that we 

can always choose an integer N to make N larger than any value that we’d like? [After five 

second pause] What property do we have that says no matter what value that we have, we can 

always choose an integer larger than it? [A student suggests the Archimedean property] Yes, the 

Archimedean property. I can always choose an integer N bigger than anything. So I will let N be 

an integer greater than 1/ε. 

[Returning to the proof on the left side of the board, Dr. T completes the following line. “Let N be 

an integer greater than 1/ε". Dr. T then completes the missing gap between "|(n+1)/n - 1|" and “< 

ε” using the work on the right side of the board. Dr. T's finished proof is presented in Figure 5]. 

*** Insert Figure 5 About Here *** 

 Dr. T: So for any epsilon [underlines "Let ε > 0"], we can find an N [underlines “Let N be an 

integer greater than 1/ε"] so that when little n is bigger than N [underlines “If n > N"], this 

absolute value is less than epsilon. So this shows that the limit of n plus 1 over n is 1. 

Short-term goals of a procedural lecture style 

 During our interview prior to teaching students how to write proofs about limits of 

sequences, Dr. T explained to me, "One of the biggest things that I've heard in the past is 'how did 

you ever think to do that?'. I want to be very clear in my work so that students could perform the 



steps themselves". Later in the interview, Dr. T indicated that he would try to illustrate a set of 

techniques and heuristics that a student could use to prove theorems about limits. In his words, "I 

would like for the students to have a mathematical toolbox. If they know the limit of something 

exists, they should immediately think of ways to make the desired quantities small" (italics are 

my emphasis). 

Characteristics of a procedural lecture style 

 Most proofs that Dr. T introduced were similar to the one that I presented above. Dr. T 

would start each proof by writing an incomplete argument designed to illustrate the proof's 

general structure. He often would remark about how one should always start that type of proof in 

the way that he did. He would say the proof would be complete if he could fill in the gaps missing 

from his argument and then describe his thinking as he attempted to fill in those gaps, writing his 

work on the board off to the side as scratch work. During his deliberation, he would stress the 

techniques and heuristics he was using, with comments such as, "A lot of learning how to write 

these proofs are learning techniques that let us give ground" and "We can give more ground than 

we need. We do not need to find the smallest N that will work, we just need to find an N". 

Finally, after doing the appropriate scratch work, Dr. T would complete the proof.  

The logical validity of a proof was only discussed after the proof was completed. The 

semantic nature of the proof usually was not discussed at all. For instance, in the proof above, Dr. 

T did not mention that as n became large, (n+1)/n would be a number very close to 1. Diagrams 

were not employed often during Dr. T's proofs. During the three 75 minute lectures discussing 

limits, Dr. T only drew four diagrams. Finally, when Dr. T introduced a concept, he would give 

the definition of the concept and then immediately write proofs using the concept. He made little 

effort to describe intuitively what the concept meant. For example, when introducing the concept 

of limit of a sequence, Dr. T gave the definition, proved that limits of particular sequences were 

unique, and then verified the limits of certain sequences (like the proof above). However, Dr. T 



did not, for instance, describe sequences as "tending toward their limit" or draw a representative 

diagram of a sequence and its limit. 

3. 2. 3. A semantic teaching style- the case of the topological concept of interior point 

A description of interior point 

 During the tenth week of class, Dr. T gave the following lecture. 

[Dr. T writes on the board “Def: Let A ⊆ R” and draws an arbitrary connected, convex set to 

represent A.] 

Dr. T: We are going to introduce a new definition. Let me tell you what we’re looking for. Look 

at this set A. Now A is a set that has some of its border, but not all of its border. For an example 

in the reals, consider the half-open interval [0, 1). 

[Dr. T writes on the right side of the board, “[0, 1)” and then draws a diagram of the set using 

typical notation. His written work thus far is presented in Figure 6.] 

*** Insert Figure 6 About Here *** 

Dr. T: When I talk about the interior of A, I want to talk about the points that are really inside A, 

not the points that are on the border and fringes of A. If you are inside the set, you can go a little 

bit in each direction and still be inside the set. One half is inside [0, 1) because if you go a little 

bit to the left or right of one half, you are still inside [0, 1). 0 is not. If you go a little bit to the left, 

you leave [0, 1). The precise definition of interior point is, if there exists a δ greater than 0 such 

that all of (a - δ, a + δ) is a subset of A, then a is an interior point of A. 

[Next to “Def: Let A ⊆ R”, Dr. T writes “if ∃δ > 0 such that (a - δ, a + δ) ⊆ A, then a is an 

interior point of A”] 

Dr. T: So you can still go δ in either direction and still be inside the set. The interior of A is just 

defined to be all of the interior points of A. 

[Underneath the first definition, Dr. T writes “int(A) = {x∈A|x is an interior point of A}”.] 



Dr. T: Let’s look at an example letting A be [0, 1) along with the single point 3 and the open 

interval between 4 and 5. So we have this. 

[On the right side of the board, Dr. T writes “A = [0, 1) ∪ {3} ∪ (4, 5) and then draws a diagram 

of this set on the real line. Dr. T’s written work to this point is presented in Figure 7].  

*** Insert Figure 7 About Here *** 

Dr. T: The interior of this set here would be the open interval 0, 1 and the open interval 4, 5. 

Although 0 is in A, 0 here ‘doesn’t count’, because no matter how small I go out, some things are 

in A, but some things are not. Also, 3 ‘doesn’t count’. No matter how far I go out around 3, 

nothing will be in A except 3 itself. 

[Dr. T draws little intervals around the points 0 and 3 in his diagram of the set A. He goes on to 

define boundary points and boundaries of sets in a similar ways and proceeds to prove theorems 

about interiors and boundaries of sets]. 

Short-term goals of a semantic teaching style 

 During our interview prior to the lecture described above, Dr. T explained that his goals 

were for students to have rich imagery that they could associate with the concepts being taught. In 

his words, "The definitions and the theorems are not so important here. The students can look 

them up... I want students to have a sense so that something occurs in their mind when they hear 

'interior point'. They should be able to draw a picture illustrating 'interior point' just like that". 

Characteristics of a semantic teaching style 

 Topological concepts were introduced similar to the way that Dr. T introduced the 

concept of interior point. Dr. T would first give an intuitive description of the idea that the 

concept was trying to capture, usually using a two-dimensional diagram. (Several times, Dr. T 

explained to the class that although the real line had one dimension, he preferred to use two 

dimensional diagrams because they were "richer" and were "better to show what was really going 

on"). He would then give the definition and explain how the definition explicitly related to the 



diagram. After this, he would apply the definition to several example problems to show that the 

definition yielded the results that one would intuitively expect. 

 Prior to presenting a proof, Dr. T would hand out a copy of the completed proof; he 

would ask the students not to take notes but instead to try to understand his work. When Dr. T 

presented proofs, he would first draw a picture illustrating the plausibility of the statement to be 

proven. A rigorous proof based on the diagram would follow later. Some details in the proof were 

omitted from Dr. T's classroom presentation, but perfectly rigorous and complete proofs were 

always given to the students in their hand-outs. 

3. 3. Discussion of Dr. T's instruction 

 In recent years, there has been research on the cognitive skills necessary for individuals 

to construct proofs in advanced mathematics. Although Dr. T was generally unaware of this 

literature, his lecture styles appear to be designed to teach students some of these cognitive skills. 

At an elementary level, a student needs syntactic skills, i.e., an ability to unpack and logically 

manipulate definitions, to construct proofs (cf., Hart, 1994; Selden and Selden, 1995). Dr. T's 

logico-structural lecture style primarily stressed these proof-writing skills. While syntactic skills 

are important, it has also been demonstrated that these skills alone are not sufficient to construct 

proofs in advanced mathematical domains (Weber, 2001, in press). Students also require strategic 

knowledge, or "heuristic guidelines that they can use to recall [mathematical] actions that are 

likely to be useful or to choose which action to apply among several alternatives". (Weber, 2001). 

Dr. T's procedural lecture style appears to be centered on explicitly teaching students this 

strategic knowledge. In an influential paper, Tall and Vinner (1981) distinguish between one's 

knowledge of a concept's definition and their image of the concept. Tall and Vinner claim that 

one's concept image, i.e. their total cognitive structure associated with that concept, is crucially 

important for how one will reason both formally and intuitively about that concept. Building on 

this notion, Weber and Alcock (in press) have argued that students in advanced mathematics 

courses need to build useful concept images and to have strong explicit links between concept 



images and concept definitions if they are to construct proofs effectively. Dr. T's semantic 

instruction appears to be centered on leading students to do this. 

 

4. Why did Dr. T teach in the way that he did? 

 During my final interview with Dr. T, I described to him the three lecture styles that I 

reported in the previous section and then asked him to comment on them. He initially 

acknowledged that my descriptions were "basically correct" and then became reflective on why 

he progressed from a logico-structural lecture style to a procedural lecture style and ultimately to 

a semantic-lecture style.  

 Dr. T explained that he started the course with a focus on logic since "it is very difficult 

for students to follow the course if they do not have a basic understanding of proof. In the first 

few weeks, I want students to have a solid base for what a proof is, and how to prove things by 

looking at the hypotheses and the conclusions". Dr. T also indicated that sets and functions were 

topics that were particularly amenable to his logico-structural lectures. "The ideas in these proofs 

[about sets and functions] are divorced from other intuitive ideas in mathematics... one can go 

from place to place in these proofs just by following his nose". 

 In describing his procedural lecture style, Dr. T stressed the importance of explaining his 

work in a detailed way so that students can replicate it. "When I first taught this course, students 

would come up to me and say, 'I can follow your proofs but I can't write them.' and 'how did you 

ever think to do that?' These students would often become so frustrated that they would stop 

working on the material. Stating step-by-step descriptions and hints gives the students a crutch to 

write proofs, so they won't be scared off and give up on the course". Further, Dr. T noted that the 

crutch he provides is often sufficient to obtain proof-writing competence in some aspects of 

analysis, by saying, "In analysis, one can often prove something by following inequalities by 

rote". Dr. T also stated an additional benefit to stressing heuristics in proofs about limits. "After 

doing a number of proofs, proving by following inequalities becomes second nature. You know, 



these techniques are going to come up again and again in analysis, even if the students go on to 

graduate school. To be strong in analysis, you need to be able to handle inequalities just like 

that". 

 Finally, Dr. T progresses to a semantic lecture style because, at some point, rote strategies 

become inadequate. "Ultimately students need to see what's really going on in the definitions and 

the inside of proofs... it's a natural progression of the difficulty of the material in this course. 

Early in the course, you could get by with certain tricks and skills. At the end of the course, you 

cannot and you need to really understand what's going on". However, Dr. T believes his previous 

lectures laid the groundwork for students to acquire this understanding. "In the beginning of the 

course, students could only understand the topics as a string of words. Now, they can begin to 

understand what these words really mean". 

 It is clear that Dr. T's instruction is based on a large number of complimentary beliefs 

about students, learning, and mathematics. I do not (and cannot) give a comprehensive list of all 

of Dr. T's relevant beliefs. However, I do list some of Dr. T's most important beliefs below. 

• If students find analysis too difficult, they will become frustrated and give up on the course. 

• Students need to have an elementary understanding of logic to follow an advanced 

mathematics course. An understanding of logic and advanced mathematical concepts cannot 

co-emerge. 

• There are basic symbolic skills (e.g., proof techniques, working with inequalities) that 

students need to master before tackling tougher problems. 

• Students cannot intuitively understand advanced mathematical concepts without sufficient 

experience working with these concepts at a symbolic level. 

Dr. T's instructional plans were also influenced by his knowledge of the mathematical 

topics that were being covered. Here, I am not speaking of his mathematical knowledge of these 

topics, per se. Rather, I am speaking of his knowledge of the skills and understanding that 



students require in order to produce competent performance at proof-writing. He observes that in 

writing set-theoretic proofs, one needs only to write the hypotheses and conclusions, and then 

"follow his nose", since these topics are relatively divorced from intuitive mathematics. Proofs 

about limits can be done if one masters manipulating inequalities. However, reasoning about 

more advanced concepts, such as the topology of the real line, require something more. 

 

5. Students' learning outcomes 

 Research has shown that students learn about advanced mathematical concepts in at least 

three qualitatively different ways. Pinto and Tall (1999) distinguish between natural learners and 

formal learners. Natural learners use their pre-existing intuitive understanding of mathematical 

concepts to give meaning to the concept’s definition and associated formal work; formal learners 

build their concept intuition by examining the logical entailments of a concept’s definition. 

Weber (2003) describes procedural learners as learners who first master flexible procedures to 

write a class of proofs and only later reflect on these procedures to give meaning to the 

techniques and concepts that they are studying. When procedural learners first learn to write a 

class of proofs, they do not understand why these arguments are valid proofs, but rather simply 

produce these arguments to receive credits on assignments. Research has demonstrated that 

students may be successful or unsuccessful taking any of these three learning approaches (Pinto 

and Tall, 1999; Weber, 2003). The issue that I will address in this section is what effect Dr. T’s 

pedagogy had on students’ approaches to learning the material. 

 As part of a larger study, I met with six students in Dr. T’s analysis class every other 

week. There were eight such meetings in the 15-week course. The purpose of these meetings was 

to examine the stages students progressed through as they learned about the mathematical 

concepts and proof techniques covered in the course. During these meetings, I asked students to 

give an intuitive description of the concepts covered in the course as well as to state the concept’s 



formal definition (in whatever order they liked). Next, students were asked to write basic proofs 

about the concept and then asked to explain why their arguments constituted valid proofs. 

 I examined students’ learning approaches in the initial interviews after they learned about 

the following topics: a function evaluated over a set (f(A)), a topic taught in a logico-structural 

style; limits of sequences, which was taught in a procedural style; and topological closure, which 

was taught in a semantic style. I coded students’ learning approach using the following scheme: 

Natural learning approach- A student was said to take a natural learning approach to learn about 

a topic if that student could give an intuitive description of that topic and used this intuitive 

description to guide his or her formal thought (e.g., used his or her intuitive description to help 

recall or reproduce a definition or to construct a proof). 

Formal learning approach- A student was said to take a formal learning approach if that student 

had little initial intuition about the concept with which he or she was working and the student’s 

intuition was not used when reasoning about this topic. Students taking a formal learning 

approach could logically justify why their proofs were valid. 

Rote/procedural learning approach- A student was said to take a rote or procedural learning 

approach to a topic if he or she constructed proofs by applying procedures that the professor 

taught them. When asked why their arguments constituted proofs, students taking a rote or 

procedural learning approach were not able to give an answer with respect to the formal theory. 

 In each case examined below, every student clearly fell into one and only one of these 

categories. The approach that students took toward learning the concepts of f(A), limits, and 

topological closure is presented in Table 1. One of the six students took a natural learning 

approach to learning all three of these topics. However, the other five students used different 

learning approaches depending upon the topic. 

*** Insert Table 1 About Here *** 

 When learning about functions evaluated over sets, five of the students approached the 

proofs in the manner that Dr. T presented, by clearly formulating the hypotheses and conclusions 



of the statement to be proven and unwrapping definitions. All students had great difficulty with 

proofs that did not simply involve obvious inferences; for instance, at no point in the course could 

any of the six students prove that f(A)/f(B) ⊆ f(A/B). 

 When proving statements about limits, five students directly used Dr. T’s methods of first 

writing out a proof framework and then doing scratch work to complete the relevant details. 

Three students (initially) did not understand why their work was logically valid. When these 

students were asked why their arguments qualified as a proof, they either simply gave a 

chronological account of their work (cf., Dreyfus, 1999) or were unable to provide a response at 

all. They did not offer a logical or intuitive explanation for why their arguments were correct. 

 When initially reasoning about topological concepts, all students would use their intuitive 

understanding of these topics, but would not use definitions or proofs to justify their work. For 

instance, when asked what the closure of the set (0, 1) ∪ (1, 2), all students would quickly answer 

[0, 2], but would not justify why their answer was correct. When the students were asked a 

question that they could not address via intuitive means (e.g., find the closure of Q in the reals), 

they did not know how to proceed. When specifically told to use the definition to address these 

questions, students were often able to answer them by constructing valid arguments. 

 

6. Discussion 

 The work presented in this paper focused on a case study of a single professor teaching 

analysis. Although many of the aspects of the teaching reported in this paper were surely unique 

to Dr. T, I believe that three general conclusions can be extracted from my data. I discuss these 

conclusions in the remainder of this paper. 

 First, although the instructor taught in a traditional definition-theorem-proof (DTP) 

format, his instruction varied widely depending on the topic that he taught. It appears that DTP 

instruction is not a single teaching paradigm, but rather a diverse collection of pedagogical 



techniques sharing some core features. This observation has an important consequence for 

educational research. As Clarke (2002) observes, “a study of learning in classroom settings would 

be incomplete without the simultaneous documentation of the social and cultural practices in 

which the learner participated, the instructional materials, and … the teacher’s actions that 

preceded and followed the learning under investigation”. Indeed, as the data in section 5 suggest, 

the lecture styles of Dr. T appeared to have a direct effect on the way some students attempted to 

learn the material. The consequence for educational research is that when examining the learning 

of students in their advanced mathematics courses, it may be insufficient to simply state that they 

were taught in a traditional format. Lecture styles that fall under the umbrella of traditional DTP 

instruction may vary widely and lead to drastically different learning on the part of the students. 

 The second issue concerns perceptions of why mathematics professors use the DTP 

paradigm for instruction. Although not based on empirical data, some researchers have proposed 

reasons for why professors use the DTP format that paint the typical mathematics professor in an 

unflattering light. Kline (1977) argues that because of pressures to publish, mathematicians have 

neither the time nor the desire to teach advanced mathematics courses well. Thus, in a viscous 

cycle, these mathematicians resort to teaching their courses in the dry manner in which they were 

taught. Davis and Hersh (1981) suggest that some professors use DTP instruction because they 

have the desire to appear brilliant; by presenting mathematical theory as a polished product, 

students will be impressed by these professor’s deductive abilities. They also suggest that other 

professors are forced to teaching straight from the textbook because they do not really understand 

the subject that they are teaching. Leron and Dubinsky (1995) believe that professors may teach 

the way they do because these professors believe their instruction will be ineffective no matter 

what they do; advanced mathematical concepts are simply too difficult for most students to 

understand in a semester-long course. In short, some conjecture that professors teach using a DTP 

format because they are disinterested, arrogant, following custom, or insecure about their 

understanding of the mathematics involved. While I concede that this might be true in some 



cases, I think it would be unfair to say that this was the case with Dr. T. Dr. T was both a 

dedicated and respected teacher whose pedagogy was based on a good deal of thought. I would 

suspect that many professors use a DTP format for, what are at least to them, very good reasons. 

It is probably a mistake to dismiss their choice of instruction based on the broad negative 

characteristics listed above. 

 Finally, as discussed in section 4, Dr. T’s instruction was based on a coherent belief 

structure that was consistent with his experiences as a teacher and his knowledge of analysis. I 

believe that this has an important consequence for research in collegiate mathematics education. 

As mentioned in the introduction, most mathematics educators and many mathematicians agree 

that DTP instruction is ineffective and alternative forms of pedagogy are sorely needed. 

Fortunately, in recent years, several such approaches have been suggested (e.g., Alibert and 

Thomas, 1991; Leron and Dubinsky, 1995; Cottrill et. al., 1996; Alcock and Simpson, 2001). 

However, merely disseminating this research to mathematicians does not ensure that this will 

improve the way that they teach. If this research is to have a significant impact on the way 

collegiate courses are taught, mathematics professors must choose to employ these methods and 

they must employ these methods effectively. Instructors will most likely choose to teach in a 

manner that is consistent with their goals and beliefs. Further, if a teacher tries to use a 

pedagogical technique that is at variance with his or her goals and beliefs, that instruction most 

likely will not be effective (cf., Aguirre and Speer, 1996).  

 Leading professors to improve their teaching of advanced mathematics courses requires 

leading these professors to adjust their goals for the course and their beliefs about mathematics 

education. In Dr. T’s case, his beliefs were coherent and stable, and hence would likely not be 

changed easily. It follows from basic constructivist principles that simply telling professors the 

beliefs that mathematics educators would like them to have would most likely do little good. 

Rather, perhaps the best way for mathematics educators to meaningfully change the way that 



mathematics professors teach is for both groups to engage in a mutual negotiation about goals for 

advanced mathematics courses and appropriate beliefs about mathematics education. 
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