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Abstract 

In this paper, we report a study in which 109 research-active mathematicians were asked 

to judge the validity of a purported proof in undergraduate calculus.  Significant results from our 

study were: (a) there was substantial disagreement among mathematicians regarding whether the 

argument was a valid proof, (b) applied mathematicians were more likely than pure 

mathematicians to judge the argument valid, (c) participants who judged the argument invalid 

were more confident in their judgments than those who judged it valid, and (d) participants who 

judged the argument valid usually did not change their judgment when presented with a reason 

raised by other mathematicians for why the proof should be judged invalid.  These findings 

suggest that, contrary to some claims in the literature, there is not a single standard of validity 

among contemporary mathematicians. 
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On Mathematicians’ Different Standards When Evaluating Elementary Proofs 

1. Introduction 

Mathematical proof is a primary means of conveying mathematical content. While it may be 

impossible to provide an operational definition of what constitutes a mathematical proof (e.g., 

Davis & Hersh, 1981), a preliminary definition describes a proof as a sequence of statements 

each of which is either accepted as true a priori or is a necessary logical consequence of previous 

statements in the proof (e.g., Auslander, 2008; Kitcher, 1984). One purported virtue of this genre 

of argumentation is that each statement in a proof is either a valid logical consequence of 

previous assertions or it is not. As Rota (1993) noted, as opposed to argumentation in most other 

disciplines, “mathematical proof does not admit degrees” (p. 93). As a consequence, many in the 

mathematical community believe that the validity of a proof is not a subjective issue but an 

objective fact, and cite the high level of agreement between mathematicians on what constitutes 

a proof as support for their position. 

Azzouni’s (2004) article, for instance, attempted to explain why “mathematicians are so 

good at agreeing with one another on whether some proof convincingly establishes a theorem” 

(p. 84). McKnight, Magid, Murphy and McKnight (2000) asserted that “all agree that something 

is either a proof or it isn’t and what makes it a proof is that every assertion in it is correct.” (p.1). 

Selden and Selden (2003) remarked on “the unusual degree of agreement about the correctness 

of arguments and the truth of theorems arising from the validation process” (p.7); they contended 

that validity is a function only of the argument and not of the reader: “Mathematicians say that 

an argument proves a theorem, not that it proves it for Smith and possibly not for Jones” (p. 11). 

Other mathematicians and philosophers, however, have been more skeptical about 

whether there are universally-adopted standards of mathematical proof. Auslander (2008) 



 Mathematicians’ Different Standards When Evaluating Proofs 4 

 

suggested that “standards of proof vary over time and even among mathematicians at a given 

time” (p. 62). Rav (2007) argued that mathematical practice has a “pluralistic nature” and 

concluded that “not only is mathematical proof ‘time-dependent’, but because of the historical 

and methodological wealth of proof practices (plural), any attempt to encapsulate such 

multifarious practices in a unique and uniform one-block perspective is bound to be defective” 

(p. 299). 

The general purpose of this article is to provide empirical support for the latter position. 

To situate our contribution more precisely, we note two different sources of disagreements that 

mathematicians may have when evaluating a proof: performance errors in the validation of a 

proof, and different standards about what constitutes a proof in an established branch of 

mathematics.1 

With regards to performance errors, two mathematicians may disagree on whether a 

proof is valid because one mathematician has overlooked a flaw in the proof. Indeed, some argue 

that this occurs surprisingly frequently in mathematical practice. Davis (1972), for instance, 

estimates that as many as half of all published proofs contain logical errors, perhaps because 

journal referees do not always check every line of a proof that they review  (Geist, Löwe, & Van 

Kerkhove, 2010; Szpiro, 2003; Weber & Mejia-Ramos, 2011). However, when disagreements 

are due to performance errors, it is believed that the mathematicians could resolve these 

                                                

1 We distinguish here between disagreements about standards in an established branch of mathematics and 

disagreements about standards in a new and developing branch (for example, debates surrounding the way 

computers contributed to the proof of the Four Color Theorem). The proof we discuss in this paper is from a well-

understood and non-controversial area of mathematics: elementary calculus. 
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disagreements with discussions about the problematic areas in the proof (as Selden and Selden, 

2003, suggest). 

In this paper, we demonstrate that there is a second source of disagreement about what 

mathematicians consider to be a proof. By asking 109 mathematicians to determine whether an 

elementary proof from undergraduate calculus was valid, we found that mathematicians used 

different standards in judging the validity of this proof and that the standards held by 

mathematicians were related to their research areas. 

 

2. A negative characterization of individual validity judgments 

In order to frame both the design and results of our empirical study, we first discuss the 

ways in which individuals make judgments about validity.  We argue that while mathematicians 

are apparently willing to make positive judgments that particular proofs are valid, these can more 

accurately be characterized as negative judgments that such proofs are not invalid.  We suggest 

here that this characterization leads to testable predictions for an individual validator’s behavior. 

A positive characterization of individual validity judgments is based upon the idea that, 

when reading a proof, mathematicians attempt to mentally reconstruct the flow of inferences in 

the proof using the written text and their knowledge of the mathematical domain (perhaps using 

‘inference packages’ as suggested by Azzouni, 2005).  In our negative characterization, on the 

other hand, we suggest that a validation attempt can more accurately be seen as a search for 

problems with a purported proof.  Such problems might be of (at least) two types, the detection 

of either of which might not be trivial.  One type of problem is a genuine logical error.  Such an 

error might be identified through a detailed line-by-line check, which reveals a statement that 

does not follow as a necessary consequence of previous statements.  Or it might be identified 
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through a higher-level check that establishes that methods have been applied inappropriately or 

that a new method is invalid (see Rav, 1999; Weber & Mejia-Ramos, 2011, for further discussion 

of approaches to proof validation).  Of course, errors can be subtle: contemporary mathematics 

contains many invalid arguments that were believed to be proofs because the errors in these 

arguments were difficult to detect (Devlin, 2003, described several such cases in detail).  

Consequently, any individual validator knows that they might fail to detect such a problem. 

Another type of problem is a serious gap.  Gaps are not always problematic: in general 

they are a natural feature of the proofs typically found in textbooks and research papers.  Such 

proofs differ from what Rav (1999) described as derivations, the latter being formal sequences of 

formulae where each element in the sequence is either an axiom or follows from an axiom by an 

accepted rule of inference.  Because the vast majority of proofs are not derivations, not every 

statement in a proof follows directly from the earlier statements; often a reader must bridge gaps 

by constructing subproofs.  Consequently, when a validator is reading a proof they must decide 

whether any gaps that they find are sufficiently serious or large to warrant rejecting the proof as 

invalid.  Again, any individual validator knows that they might fail to make an appropriate 

judgment about such a gap. 

For the mathematical community as a whole, the potential existence of errors and gaps in 

proofs is not unduly disruptive.  Even with a negative characterization of validity judgments in 

mind, very high levels of confidence in a theorem and its proof can arise in time, for two reasons.  

First, if many mathematicians study a proof, we gain confidence that if an error existed, it would 

be discovered.  Second, as Dawson (2006) argued, very high levels of confidence may also be 

gained through the generation of different proofs of the same theorem, which in a sense may 

serve as independent verifications of one another. 
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For individual validators, however, the potential existence of errors and gaps has 

consequences in terms of the balance of confidence with which validity judgments can be made.  

If a gap or a problematic statement or method is located, the validator can be confident that the 

proof (as written) is not correct.  If, however, no such gap, statement or method is found, the 

validator cannot with absolute confidence conclude that none exists: a problem might simply 

have eluded detection.  Why then would a validator ever conclude that a proof is valid?  We 

suggest that this happens when, after a validation attempt conducted with (what they perceive to 

be) due care and attention, the validator has failed to reject it as invalid.   

Thus the positive and negative characterizations described here differ in the way they 

characterize the validator’s goals. In one case the goal is to find a problem, in the other it is to 

reconstruct the flow of inferences. Based on the assumption that a validator will be more 

confident about their judgment (and will find it easier to justify) when it is based on reaching 

their goal than when it is based on failing to reach their goal, our negative characterization, 

therefore, leads to the following two predictions about validator behavior: 

1. When validating a purported proof, those who regard it as invalid will be more 

confident in their judgment than those who regard it as valid (because they have 

found a problem, rather than merely having failed to find one). 

2. It will be easier for validators to justify their response if they have rejected the 

proof as invalid rather than accepting it as valid (because those who rate it valid 

have nothing to say beyond that they have failed to find a problem). 

Note that a positive characterization of validity would make the opposite predictions. If 

validators successfully reconstruct the flow of inferences from premises to conclusions, they 

would confidently accept the proof as being valid, so we would expect those mathematicians 
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who rated the proof as ‘valid’ would be more confident in their judgments than those who rated 

the proof ‘invalid’ (as they had successfully achieved their aim of reconstructing the flow of 

inferences). Similarly, under a positive characterization of proof, those mathematicians who 

rated the proof invalid would have nothing to offer in justification beyond reporting that they 

failed to reconstruct the proof; whereas those who rated it valid would be able to elaborate upon 

their reconstruction and report that it had occurred successfully. 

We therefore believe that predictions 1 and 2 offer a method of empirically distinguishing 

between positive and negative characterizations of proof validation, and one of the goals of our 

study was to test these accounts. 

 

3. Study design in relation to prior work on validity judgments 

The work reported here builds on two psychological studies (Inglis & Alcock, in press; 

Weber, 2008) that we conducted in response to Selden and Selden’s (2003) research on the 

cognitive processes of undergraduate mathematics majors engaged in proof validation.  In their 

study, Selden and Selden (both published research mathematicians) asked students to evaluate an 

argument they labeled “the real thing”, which they judged to be a fully valid proof, and another 

they labeled “the gap”, which they evaluated as invalid.  Weber (2008) gave these and other 

proofs to eight mathematicians and asked them to determine whether or not they were valid.  

One declared “the real thing” invalid, two judged “the gap” to be valid and another said that such 

a judgment about “the gap” was impossible without context.  In a separate study, Inglis and 

Alcock (in press) found similar results – 5 of 12 mathematicians judged “the real thing” invalid 

and 5 of 12 mathematicians judged “the gap” to be valid.  Selden and Selden’s proofs were short 

and simple so we were surprised to see this level of disagreement among other mathematicians.  
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However, these findings gave only limited information about actual mathematical practice since 

they were based on variants of student-produced proofs and were therefore somewhat awkwardly 

written.  

This drawback was addressed to some extent by the inclusion in Inglis and Alcock’s (in 

press) study of the following purported proof: 

Theorem. 

! 

x "1dx = ln(x) + c.#  

Proof. We know that 

! 

xkdx =" xk+1

k +1
+ c  for 

! 

k " #1. 

Rearranging the constant of integration gives 

! 

xkdx =" xk+1 #1
k +1

+ c' for 

! 

k " #1. 

Set 

! 

y =
xk+1 "1
k +1

, and take the limit as k→ -1 as follows.  

Let m=k+1, and rearrange 

! 

y =
xk+1 "1
k +1

 to give 

! 

xm =1+ ym  or 

! 

x = (1+ ym)
1
m . 

Set 

! 

n =
1
m

. Then 

! 

x = (1+ ym)
1
m = 1+

y
n

" 

# 
$ 

% 

& 
' 
n

(ey  as 

! 

n"# , by properties of e. 

As 

! 

n"#  we have 

! 

m"0, so 

! 

k "#1. 

In other words, 

! 

x "ey as 

! 

k "#1, so 

! 

y "ln(x)  as 

! 

k "#1. 

So 

! 

xkdx =" xk+1 #1
k +1

+ c'= y + c '$ln(x) + c ' as

! 

k "#1. So 

! 

x "1dx = ln(x) + c' .#  

This proof is more substantial than those used by Selden and Selden, and is written in a standard 

format and style.  Nonetheless, it involves relatively straightforward undergraduate mathematics, 

and the results were similar: 6 of the 12 mathematicians who participated in Inglis and Alcock’s 

study judged the proof valid and 6 judged it invalid.   

These studies all had small sample sizes because they were all designed to focus on the 

methods by which mathematicians and undergraduates validate purported proofs, not their final 
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judgments.  To investigate whether these apparent differences in validity judgments were 

genuine, we thus asked a large number of research-active mathematicians to judge the validity of 

this proof.  This paper reports the results. 

 

4. Method 

Given the general difficulty of obtaining large samples of research-active 

mathematicians, we decided to maximize our sample size by collecting our data through the 

internet.  Web-based research methods present some practical difficulties, such as the possibility 

of participants submitting multiple responses.  However, by taking certain precautions (outlined 

by Reips, 2000), these methods have been found to produce results that are consistent with those 

found by traditional experimental methods (Gosling, Vazire, Srivastava, & John, 2004; Krantz & 

Dalal, 2000).  We followed the strategies employed by Inglis and Mejia-Ramos (2009a, 2009b) 

to conduct internet studies in mathematics education research. 

4.1 Participants 

Participants were 109 research-active mathematicians (56 PhD students and 53 academic 

staff) associated with Australian and Canadian universities. They were recruited through an 

email sent via their departmental secretary.  Those mathematicians who chose to take part in the 

study clicked a link contained in the email, which directed them to the study website. 

4.2 Procedure 

The study website consisted of six pages of information and questions which participants 

moved through at their own pace.   

Page 1 contained background to the study and reminded participants that they should 

only continue if they were a research-active mathematician.   
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Page 2 asked participants to provide demographic information about themselves: their 

status (PhD student or academic staff), number of years of experience in teaching 

undergraduates, broad research area (applied mathematics, pure mathematics or statistics), and 

their specific research area (AMS subject classification). 

Page 3 gave the following instruction, which contextualized the task: “Below is a proof 

of the type that might be submitted to a recreational mathematics journal such as The 

Mathematical Gazette.  Please read the proof and decide whether or not you think it is valid.”  

Participants were then presented with the proof of the theorem stating that !!!!" = ln ! + !, 

as given earlier. After reading the proof, participants were asked two questions: “Do you think 

the proof is valid or invalid?” and “How certain are you that your answer is correct?”. They 

responded to the first by selecting either “valid” or “invalid”, and to the second via a five point 

Likert scale (from “1 – It was a complete guess” to “5 – I am completely certain”).  Finally, they 

were given the opportunity of explaining their answer via a free response text box. 

Page 4 asked participants to estimate what percentage of mathematicians would agree 

with their judgment about the validity of the purported proof (they responded by selecting 0-9%, 

10-19% etc.).  They were also asked to suggest reasons another mathematician might have for 

disagreeing with their judgment. 

Page 5 presented participants with an explicit objection to the proof that had been given 

by a mathematician in a pilot study:  

“They do not say anything about the type of convergence they are dealing with. 

Therefore, in the last line they seem to assume that the limit and the integral commute, 

which is false in general.” 



 Mathematicians’ Different Standards When Evaluating Proofs 12 

 

The original proof was presented alongside the objection, and participants were asked to state 

whether this objection was “reasonable” (responding “yes”, “no” or “unsure”), and whether the 

objection (on its own) was “enough to render the proof invalid” (again responding “yes”, “no” or 

“unsure”).  Finally they were given the opportunity to explain their response via a free text box. 

Page 6 thanked participants for their time and gave information about how to receive 

information about the purpose of the experiment. 

 

5. Results and discussion 

5.1 Overview: Disagreement and results by disciplinary area 

Of the 109 participants who completed the survey2, 29 (27%) judged the argument valid, 

and 80 (73%) judged it invalid.  There was no significant difference between the responses of 

academic staff compared and those doctoral students, p=.522 (throughout this paper, if no test 

statistic is reported – as here – this indicates that the significance level was calculated using a 

2×2 Fisher’s Exact Test), consequently we do not distinguish between these groups in the 

analyses that follow. 

Participants’ responses were related to their research area, with applied mathematicians 

more likely than pure mathematicians to judge the argument valid, p=.002. These data are shown 

in Table 1. The association between research area and validity judgment retained significance 

when doctoral students were removed from the analysis, p=.011. 

Predictions Based on the Negative Characterization of Validity Judgments 

                                                

2 Around 65% of those participants who started the survey completed it. There were no significant 

differences in research area or validity judgments between those who completed the survey and those who dropped 

out. 
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As predicted by our negative characterization of mathematical validity judgments, those 

who judged the argument invalid had higher confidence in their responses, M=4.16, than those 

who rated it valid, M=3.41, U=658, p<.001.  Also as predicted, participants who judged the 

argument invalid seemed to find it easier to justify their responses: they were more likely to 

leave a comment explaining their answer than were those who rated the argument valid, 64% 

versus 35%, p=.011. 

Comments left by those who judged the proof invalid fell into three main categories. 

Some participants complained about the interchange of the limit and the integral in the last line 

of the proof (thus flagging the same problem as the pilot study participant whose comment we 

used).  For example, one wrote: 

“Even if all the statements in a ‘proof’ are correct, it is not a correct proof unless there is 

a justification of the transition from each to the next. What is the justification for taking 

the limit under the integral sign?” 

Another wrote: 

“The issue is whether or not it is valid to exchange integration with taking the limit 

! → −1   ! → ∞ . Since the limit is a priori pointwise, one must use a convergence 

theorem here (e.g. restrict to a compact interval away from zero and use the dominated 

convergence theorem, or show that the limit is uniform, etc.)  It seems that this detail can 

be corrected, but it would be imprudent to call the proof valid without explaining this 

point.” 

A second broad category of comments expressed concern about the manipulation of the constant 

of integration. One participant wrote: 
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“The line ‘rearranging the constant of integration’ is invalid, since c’ now depends on k, 

but previously it did not. I did not read further.” 

The final category of comments were complaints about a lack of clarity regarding what 

definitions the author was using: 

“The proof doesn’t make any sense without defining what ‘ln’ and ‘e’ mean. Defining 

ln(x) by means of the integral of 1/x and exp to be the inverse function of ln is one of the 

standard ways; if this proof were showing something, it would be that this definition is 

equal to some other definition – but which one?” 

We note that all of these comments have a claim to be valid criticisms of the proof, meaning that 

the 27% of participants who judged the argument valid (among them a disproportionate number 

of applied mathematicians) must have either not noticed these problems or not considered them 

sufficient to reject the proof as invalid.  We consider various hypotheses to account for these 

results in the next section. 

5.2 Agreement estimates 

Both those who judged the proof valid and those who judged it invalid believed that 

theirs would be the majority view.  The overall mean estimate of the number of mathematicians 

who would agree with participants’ judgments was 75.0%.  The mean agreement estimate for 

those who believed the proof was valid was 64.7%, significantly higher than 50%, t(28)=4.59, 

p<.001.  The equivalent figure for those who believe the proof was invalid was 78.7%, again 

significantly higher than 50%, t(79)=13.28, p<.001.  However, these figures indicate that 

participants did not all believe that the majority judgment would be overwhelming.  Allowing 

that (say) one quarter of one’s colleagues might disagree seems to indicate a recognition that one 

might have missed a problem or that others might evaluate gaps as more or less serious.  Indeed, 
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relatively few participants thought that there would be uniform agreement: only 30% of 

participants believed that over 90% of mathematicians would agree with them.  This is perhaps 

surprising given the suggestion that mathematicians exhibit near uniform agreement about 

validity that has been expressed by Azzouni (2004), McKnight et al. (2000), and others.3 

5.3 Willingness to change a judgment 

All the results presented so far, however, leave open the question of whether the 

participants who judged the proof valid did not find any problems, or whether they found 

problems but judged them insufficient to render the proof invalid.  Thus we do not yet know why 

pure and applied mathematicians differed in their evaluations of the proof.  The hypothesis that 

we wish to advance is that pure and applied mathematicians use different standards when 

deciding whether a problem in a proof is sufficient to render the proof invalid: that they evaluate 

potential problems differently.  However, there are alternative hypotheses.  Perhaps applied 
                                                

3 As explained in the methods section, we conducted a pilot study in order to obtain an appropriate quote to 

be used in the second half of the study. Because the pilot was identical to the main study until after participants had 

read and rated the proof, it can be seen as a replication for the results discussed above. A total of 111 research-active 

mathematicians took part in the pilot, all from US universities. 77% rated the proof as invalid and 23% as valid. 

These ratings were related to participants’ research areas, p=.005, with applied mathematicians more often rating the 

argument as valid (43%) than pure mathematicians (17%). Those who rated the argument invalid were more 

confident in their judgment than those who rated it valid, U=637, p=.001, and there were more comments left by 

those who rated the argument invalid than by those who rated it valid, p<.001. Note that because the participants in 

the pilot study were all from US universities, these data render implausible an alternative account suggested by a 

reviewer: that the relationship between research area (pure/applied) and validity judgment found in our main study 

could have been confounded by a relationship between geography (Australia/Canada) and validity judgment (as 

perhaps the balance of pure and applied research being conducted in these two countries is different). All 

participants in the pilot were from the USA, and we found the same relationship. 
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mathematicians, who in their practice may be more concerned with computation than deduction, 

are less adept at seeking logical errors.  Or perhaps they read the proof less carefully than the 

pure mathematicians and consequently were more likely to overlook the problems cited by 

others.  These accounts attribute the disagreement among participants to performance errors on 

the part of those who rated the proof valid.  Alternatively, perhaps applied mathematicians 

simply look for different sorts of problems when validating a proof, so did not spot the particular 

problems raised by our proof.  All of these alternative hypotheses suggest that instead of noticing 

a problem with this proof but not judging it sufficiently serious, those mathematicians who rated 

the proof valid simply did not notice any problems at all. 

To investigate this issue we turn to participants’ responses to the latter section of the 

instrument, where they were asked to read a specific objection given by a participant in the pilot 

study.  This objection, given earlier, related to how the author of the proof commuted the limit 

and integral in the last line. 

Recall that participants were asked two questions about the presented objection: whether 

or not it was “reasonable”, and whether or not, on its own, it was enough to render the proof 

invalid.  A substantial majority of all participants believed the objection was reasonable (82% 

said it was, with a further 9% saying they weren’t sure), and these reasonableness judgments 

were not significantly related to their original validity ratings, p=.113.  Crucially, however, 

participants’ responses to the second question were related to their original validity ratings, 

p<.001.  A majority (65%) of those who had originally claimed the proof was invalid said that 

this objection was, on its own, enough to render the proof invalid.  In contrast only one 

participant who had originally rated the proof valid (3%) believed that this objection was 

sufficient.  These data are shown in Table 2. 
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This result allows us to address the above hypotheses.  If those participants who judged 

the proof valid simply had not noticed that the exchange of limit and integral was problematic, 

then we would have expected them to change their minds when this was explicitly pointed out to 

them.  In fact only one participant did so.4  These data provide strong support for our claim that 

the reason for the disagreement about the validity of the original proof was not that a subset of 

participants failed to notice problems that others spotted.  Rather, we suggest that some 

participants, disproportionately applied mathematicians, applied different standards when 

deciding whether a potential problem with the proof was sufficient to render it invalid. 

 

6. General Discussion 

The results of this study provide empirical support for the claim that there is not universal 

agreement among mathematicians regarding what constitutes a valid proof, in the context of a 

submission to a journal such as The Mathematics Gazette.  Our findings suggest that pure and 

applied mathematicians adopt different standards in judging proof validity; in particular, that 

they apply different standards when judging whether a potential problem in a proof is sufficient 

to render it invalid.  This claim is true even in the domain of relatively elementary mathematics, 

such as the content of undergraduate calculus.  Our study thus has implications for at least three 

academic audiences. 

                                                

4 Note that participants took part in the study anonymously on the internet, so there was no social pressure 

placed upon them which could have encouraged them to remain faithful to their earlier answer. Nevertheless it is 

possible that participants’ desires to confirm their earlier response was so strong that, despite the lack of social 

pressure, they were still biased towards unreasonably dismissing an objection they might otherwise have agreed 

with. Future research could productively investigate this issue. 
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First, mathematicians are usually aware that students struggle to engage in formal proof-

based mathematics.  They are also usually aware that they as individuals might require different 

standards of proof from students at different levels – a beginning student might be required to 

spell out every step in a way that a more advanced student is not.  However, mathematicians 

might not be aware of the extent to which students could be grappling with contradictory 

messages; our study indicates that even within central content areas and with a requirement to 

judge in a particular way, mathematicians disagree about what constitutes validity.  They may 

therefore be giving students inconsistent feedback on what features a proof needs to have in 

order to be considered valid. 

Second, because of these different judgments, researchers conducting psychological 

studies on proof should take care in their interpretations, particularly when classifying specific 

proofs as “obviously” valid or invalid.  Our studies cast doubt on the validity status of two proofs 

used by Selden and Selden (2003) (Inglis & Alcock, in press; Weber, 2008).  Judgments about 

the validity of proofs, even at the undergraduate level, appear to be far more nuanced than is 

commonly thought.  Our interpretations of research on student understanding of such proofs 

should perhaps be similarly nuanced. 

Finally, our results allow us to address the widely (albeit, not universally) held 

philosophical assumption that there is a remarkably high degree of agreement amongst 

mathematicians regarding whether an argument constitutes a proof (Azzouni, 2004; McKnight et 

al., 2000).  Our results indicate that this assumption may not be correct.  Instead, they indicate 

heterogeneity in mathematical practice that is more in line with Rav’s claim (2007) that 

mathematical practice is “pluralistic”.  We thus argue that philosophers should be cautious in any 
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attempts to explain the high level of agreement among mathematicians. Such agreement might 

simply not exist. 
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Tables 

Table 1. Participants’ responses to the proof, by research area. 

Research Area Number of 

Valid Ratings 

Number of 

Invalid Ratings 

Applied Mathematics 12 12 

Pure Mathematics 13 64 

 

 

 

Table 2. Participants’ responses to the question “Do you think this objection (on its own) is 

enough to render the proof invalid?” 

Original Rating Yes No Unsure 

Valid 1 24 4 

Invalid 52 19 9 

 

 


