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Rigorous Proof of a Liquid-Vapor Phase Transition in a Continuum Particle System
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We consider particles inRd , d $ 2, interacting via attractive pair and repulsive four-body potentials
of the Kac type. Perturbing about mean field theory, valid when the interaction range becomes infinite,
we prove rigorously the existence of a liquid-gas phase transition when the interaction range is finite
but long compared to the interparticle spacing. [S0031-9007(98)06167-5]
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An outstanding problem in equilibrium statistical me
chanics is to derive rigorously the existence of a liquid
vapor phase transition in particles interacting with an
kind of reasonable potential, say Lennard-Jones or h
core plus attractive square well. This is in marked co
trast to the situation for lattice systems where proofs
phase transitions abound. Thus for an Ising model w
ferromagnetic interactions in dimensionsd $ 2 there are
known to be two coexisting phases at low temperatur
These are perturbations of the two ground states, nam
the configuration with all spins up or all spins down. A
nonzero temperature, there are fluctuations which ca
the formation of droplets of the opposite phase, but th
energy cost is so high that they remain, at low tempe
tures, ind $ 2, only small perturbations of the ground
state. It was Peierls [1] who first gave a convincing arg
ment of the validity of such a picture; the argument wa
later made fully rigorous by Dobrushin [2] and Griffiths
[3]. Independently of this general argument, Onsager [
solved the two-dimensional Ising model onZ2 explicitly,
with nearest neighbor interactions, and found the behav
of the system near the critical temperature which mar
the end point of phase coexistence. Since that time
lutions have been found for many other two-dimension
lattice models [5]. At the same time ferromagnetic an
other inequalities as well as the development of the po
erful Pirogov-Sinai formalism [6] have resulted in com
prehensive rigorous theory of phase transitions in latti
systems, ind $ 2, at sufficiently low temperatures.

The extension of these results to continuum partic
systems has proven difficult. The ground states of su
systems are not at all easy to characterize; they
presumed to be periodic or quasiperiodic configuratio
which depend in some complicated way on the inte
particles forces. This is however far from proven an
hence the analysis of the fluctuations that appear wh
we increase the temperature above zero is correspo
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ingly harder, indeed very much harder, to study than
the simple lattice systems; moreover key inequalities li
the ferromagnetic ones are no longer available. The
problems have been overcome so far only for som
multicomponent systems with special features. In partic
lar, Ruelle [7] proved that the two component Widom
Rowlinson model [8] has a demixing phase transitio
Ruelle’s proof strongly exploits the symmetry between th
components present in this model: see also later pro
of phase transitions in related models [9–11]. There a
also proofs of phase transitions ind ­ 1 for continuum
systems with interactions which decay very slowly or n
at all. Such models with many particle interactions we
analyzed by Felderhof and Fisher [12], while Johanss
[13] has considered pair interactions which decay asr2a ,
1 , a , 2, proving that at low temperatures the pressu
is not differentiable.

In this Letter we report the first proof of a liquid-
vapor transition in one-component continuum system
with finite range interactions and no symmetries. Th
basic idea of our approach is to study perturbations n
of the ground state but of the mean field behavior (mfb
i.e., we shall consider situations where the interactions
parametrized by their rangeg21 [14,15] and perturb about
g ­ 0 which gives mfb. Such scaling potentials wer
investigated by Kac, Uhlenbeck, and Hemmer (KUH) [16
for a system of one-dimensional hard rods with an add
pair potential

fgsqi , qjd ­ 2
1
2 ag exps2gjqi 2 qjjd, g, a . 0 .

(1)
This was later generalized by Lebowitz and Penrose (L
[17] to d-dimensional systems with suitable short rang
interactions and general Kac potentials of the form

fgsqi , qjd ­ 2agdJsgjqi 2 qjjd (2)

with
R

Rd Jsrd dr ­ 1, Jsrd . 0.
© 1998 The American Physical Society 4701
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LP showed that in the infinite volume limit followed
by the limit g ! 0 the Helmholtz free energya takes the
form

lim
g!0

asr, gd ­ CEha0srd 2
1
2 ar2j . (3)

Herer is the particle density,a0 is the free energy density
of the reference system, i.e., the system witha ­ 0 in (2),
a0 is convex inr (by general theorems), and CEh fsxdj is
the largest convex lower bound off. (The dependence of
a0 on the temperatureb21 has been suppressed.) Fo
a large enough the term in the curly brackets in (3
has a double well shape and the CE corresponds to
Gibbs double tangent construction. This is equivalent
Maxwell’s equal area rule applied to a van der Waal
type equation of state where it gives the coexistence
liquid and vapor phases [17].

Following the work of KUH and LP, various attempts
were made to go beyond theg ­ 0 limit [18,19]. It
is clear from general arguments, and it follows als
explicitly from [14], that in d ­ 1 there is no phase
transition forg . 0. Straightforward expansions ing are
therefore bound to fail ford ­ 1, in the two phase region.
In d . 1 these schemes give plausible, but uncontrolle
approximations. The main difficulty comes from the
fact that the phase transition is a singular event, who
dependence on the parameterg is not at all smooth. To
overcome this problem requires all the modern machine
of Pirogov-Sinai theory built up in the past twenty-five
years [6,20,21] plus considerable additional effort.

It is the success of such an effort which enables us
show for some systems ind $ 2, that their behavior at
finite g . 0 is close to mfb atg ­ 0, so that a phase
transition in the latter yields a phase transition in th
former for sufficiently smallg. Such results have been
recently obtained for Ising models [20], where one us
a version of the Peierls argument, exploiting the sp
flip symmetry of the model. The absence of symmetrie
in our case requires instead the whole machinery
the Pirogov-Sinai theory [6,21]. To insure stabilizatio
against collapse, which would be induced by a Ka
attractive pair potential, the natural choice made by KU
and LP is to replace point particles by hard spheres
similar strongly repulsive pair interactions. Our approac
however does not work in such a case, as we need
cluster expansion for the unperturbed reference syst
(i.e., without the Kac interaction) at values of the chemic
potential or density for which it is not proven to hold
Instead we consider point particles and insure stabili
by introducing a positive four-body potential of the sam
range as the attractive two-body one. The unperturb
system is then the free, ideal gas for which the clust
expansion holds trivially. The price is a much mor
involved mean field analysis, which requires a speci
choice of the form of the interactions.

We now specify the model, state precisely our result
and give a flavor of the proof [22]. Letq ­ hqij, i ­
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1, 2, . . . be a configuration of particles in a domainL ,
Rd , d $ 2. The energy of the configurationq is

Hgsqd ­ 2
1
2!

X
i1

X
i2fii1

Js2d
g sqi1 , qi2d 1

1
4!

X
i1

3
X

i2fii1

X
i3fii1,i2

X
i4fii1,i2,i3

Js4d
g sqi1 , qi2 , qi3 , qi4d . (4)

Here

Js2d
g sqi1 , qi2d ­ gdJs2dsgqi1 , gqi2 d , (5)

Js4d
g sqi1 , qi2 , qi3 , qi4d ­ g3dJs4dsgqi1 , · · · , gqi4 d , (6)

and

Js2dsr1, r2d $ 0, Js4dsr1, r2, r3, r4d $ 0 , (7)

are fixed, bounded, translation invariant functions of finit
range: they vanish whenever any of the distancesjri 2

rj j is larger than some fixed lengthld.
The equilibrium properties of this system are specifie

by a grand canonical ensemble with reciprocal temper
tureb, chemical potentiall, and suitable boundary condi-
tions (bc), i.e., by the Gibbs measurem

bc
L,g,b,l. To prove

coexistence of liquid and vapor phases for someb andl

we have to show that by choosing two different bc, one fa
voring the liquid and another the vapor phase, call them1

and2, the Gibbs measures obtained in the limitL % Rd

describe two phases differing primarily by their densities
the appropriate order parameter for this transition. We d
this in detail [22] for a particular choice of the interaction

Js2dsr1, r2d ­ jBsr1d > Bsr2dj , (8)

Js4dsr1, r2, r3, r4d ­ j >4
j­1 Bsrjdj , (9)

whereBsrd is the ball inRd of volume 1 and centerr , i.e.,
Js2dsr1, r2d is equal to the overlap volume of the two balls
[of radius p21y2 and s4y3pd21y3 in d ­ 2, 3] centered
at r1 and r2. Similarly Js4dsr1, r2, r3, r4d is equal to the
overlap volume of four such balls.

Theorem.—Let bc ­ s 3
2 d

3

2 and b0 . bc (as below),
then, for anyb [ sbc, b0d there exist functionsg0sbd
andlsg, bd such that for0 , g , g0sbd the model with
Js2d and Js4d as in (9) has at least two distinct infinite
volume Gibbs measuresm6

g,b . These measures are trans
lation invariant and ergodic (with respect to space tran
lations), with an exponential decay of correlations. The
have particle densities, respectively, equal torg,b,2 . 0
and rg,b,1 . rg,b,2. In the limit g ! 0, lsg, bd !
lsbd, rg,b,6 ! rb,6 and there exist positive constants
c and d such thatjlsg, bd 2 lsbdj 1

P
s­6 jrg,b,s 2

rb,sj # cgd.
The reason for the particular choice of the interaction

(9) as well as for the appearance ofb0 in the theorem
are related to the mfb of the system (4) valid whe
g ! 0 (following the limit L % Rd). The mean field
equilibrium profiles are functionsr?srd that minimize the
mean field Gibbs free energy functional,
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Fb,lsrd ­
Z

dr
rsrd

b
fln rsrd 2 1g 2

Z
dr lrsrd 2

1
2!

Z
dr1 dr2 Js2dsr1, r2drsr1drsr2d

1
1
4!

Z
dr1 · · · dr4Js4dsr1, . . . , r4drsr1d · · · rsr4d , (10)
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wherersrd is a test density profile and the first integra
gives the entropy contribution to the free energy.

The minimizersr?srd satisfy the mean field equation
dFb,lydrsrd ­ 0. The resulting equation is highly non-
linear and not very much is known about its solution
for generalJs2d and Js4d. For the particular choice (9)
Eq. (10) simplifies to

Fb,lsrd ­
Z

dr

∑
rsrd

b
fln rsrd 2 1g 2 lRsr, rd

2
1
2!

R2sr , rd 1
1
4

R4sr , rd
∏

, (11)

whereRsr , rd is the average density over a ball of un
volume inRd centered atr. It is now easy to show, using
the convexity of the first term, that the minimizers ar
always spatially homogeneous i.e., they correspond to
constant densityr $ 0. For such a density, the Gibbs
free energy per unit volume given in (10) takes the form

fsrd ­ b21rsln r 2 1d 2 lr 2 r2y2 1 r4y24 .

(12)
The minimizing density will therefore be a solution of th
equation

f 0srd ­ b21 ln r 2 l 2 r 1 r3y6 ­ 0 . (13)

This equation has a unique solution for alll when b #

bc ­ s3y2d3y2, while for b . bc there exists alsbd
such that there are two minimizing solutionsrb,1 .

rb,2 with lsbd and rb,6 the same as in the last
statement of the theorem. In other words,fsrd is convex
for b # bc and has a double well shape of equa
height for b . bc, l ­ lsbd. Moreover, there is a
b0 . bc, given by the smallest value ofb . bc for
which f 00srb,6d ­ 2sbrb,6d21, such that the diagonal

part of
d2Fb,lsbd

drsrddrsr0d jr­rb,6 is positive and dominates the
nondiagonal ones. Whenb . b0 the second variational
derivative ofFb,lsbd is still positive atr ­ rb,6 but the
diagonal part no longer dominates. The former case
much simpler to analyze and we have so far worked o
all the details only for that case.

To prove our theorem we carry out a controlle
Pirogov-Sinai cluster expansion about theg ­ 0 mean
field state. The first step in this analysis is a “coars
graining,” in which we partition space into cubes of sizel,
with l very large compared to the interparticle spacing b
small compared tog21. Given a particle configuration
q we call hrxj, x the centers of the cubes, the particl
densities in each cube. We then show that the meas
over the hrxj, obtained by integrating out all the othe
variables is, to within controllable errors, a Gibbs measu
l
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with an effective Hamiltonian which is essentially a
discrete version of the mean field free energy functiona
(10) with rsrd there replaced byrx, and balls replaced by
“lattice balls.” The important effect of this procedure is
that the new effective inverse temperature isbld . For g

small enough andl correspondingly large enough, we are
now in the right setup for the Pirogov-Sinai theory. The
remainder terms are exponentially decaying multibod
interactions.

The “ground states” of our “lattice system” correspond
ing to the vapor and liquid states are now defined by en
sembles of configurations having therx “close” to the
mean field vapor and liquid densitiesrb,1 andrb,2. The
analysis of this system is conceptually close to the on
used in the extension of Pirogov-Sinai theory to continu
ous (unbounded) spin systems developed in [21]. Ou
analysis is actually simpler than that in [21]. Instead
of using a cluster expansion which requires dealing wit
interactions among many Peierl’s type contours separa
ing “bubbles” of one ground state inside another, brough
about by the extended range of the potentials, we use
more analytic approach. We show in particular that th
restricted effective Hamiltonian giving the Gibbs mea
sures of the lattice system corresponding to the1 or 2

ground state ensembles satisfy the Dobrushin uniquene
condition. We then show that this remains true even a
ter the addition of contours to the ground states. From
this follows the exponential decay of correlations in the
liquid and vapor phases, forbc , b , b0, stated in the
theorem. We expect to prove that similar results will hold
even at lower temperatures,b $ b0, but, as already men-
tioned, the proof is now more difficult: technically, the
equation satisfied by the stationary points of the free en
ergy functional (10) is no longer a contraction and the
criteria for Dobrushin uniqueness is no longer satisfied b
the lattice system.
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