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Rigorous Proof of a Liquid-Vapor Phase Transition in a Continuum Particle System
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We consider particles if®?,d = 2, interacting via attractive pair and repulsive four-body potentials
of the Kac type. Perturbing about mean field theory, valid when the interaction range becomes infinite,
we prove rigorously the existence of a liquid-gas phase transition when the interaction range is finite
but long compared to the interparticle spacing. [S0031-9007(98)06167-5]

PACS numbers: 64.70.Fx, 05.70.Fh, 64.10.+h, 64.60.—i

An outstanding problem in equilibrium statistical me- ingly harder, indeed very much harder, to study than in
chanics is to derive rigorously the existence of a liquid-the simple lattice systems; moreover key inequalities like
vapor phase transition in particles interacting with anythe ferromagnetic ones are no longer available. These
kind of reasonable potential, say Lennard-Jones or hardroblems have been overcome so far only for some
core plus attractive square well. This is in marked con-multicomponent systems with special features. In particu-
trast to the situation for lattice systems where proofs ofar, Ruelle [7] proved that the two component Widom-
phase transitions abound. Thus for an Ising model wittRowlinson model [8] has a demixing phase transition.
ferromagnetic interactions in dimensiods= 2 there are  Ruelle’s proof strongly exploits the symmetry between the
known to be two coexisting phases at low temperaturecomponents present in this model: see also later proofs
These are perturbations of the two ground states, namelgf phase transitions in related models [9-11]. There are
the configuration with all spins up or all spins down. At also proofs of phase transitions éih= 1 for continuum
nonzero temperature, there are fluctuations which causs/stems with interactions which decay very slowly or not
the formation of droplets of the opposite phase, but theiat all. Such models with many particle interactions were
energy cost is so high that they remain, at low temperaanalyzed by Felderhof and Fisher [12], while Johansson
tures, ind = 2, only small perturbations of the ground [13] has considered pair interactions which decay &,
state. It was Peierls [1] who first gave a convincing argu-1 < « < 2, proving that at low temperatures the pressure
ment of the validity of such a picture; the argument wass not differentiable.
later made fully rigorous by Dobrushin [2] and Griffiths  In this Letter we report the first proof of a liquid-
[3]. Independently of this general argument, Onsager [4apor transition in one-component continuum systems
solved the two-dimensional Ising model @A explicitly, ~ with finite range interactions and no symmetries. The
with nearest neighbor interactions, and found the behavidoasic idea of our approach is to study perturbations not
of the system near the critical temperature which markef the ground state but of the mean field behavior (mfb);
the end point of phase coexistence. Since that time sa-e., we shall consider situations where the interactions are
lutions have been found for many other two-dimensionaparametrized by their range ! [14,15] and perturb about
lattice models [5]. At the same time ferromagnetic andy = 0 which gives mfb. Such scaling potentials were
other inequalities as well as the development of the powinvestigated by Kac, Uhlenbeck, and Hemmer (KUH) [16]
erful Pirogov-Sinai formalism [6] have resulted in com- for a system of one-dimensional hard rods with an added
prehensive rigorous theory of phase transitions in latticgair potential
systems, ind = 2, at sufficiently low temperatures. 1

The extension of these results to continuum particle¢7(Qi’q«7) = —zavexd=vyla — g, v,a = 0.
systems has proven difficult. The ground states of such (@B)]
systems are not at all easy to characterize; they ar€his was later generalized by Lebowitz and Penrose (LP)
presumed to be periodic or quasiperiodic configuration§l7] to d-dimensional systems with suitable short range
which depend in some complicated way on the interinteractions and general Kac potentials of the form
particles forces. This is however far from proven and a) = —av'I(ylg — ail) >
hence the analysis of the fluctuations that appear when ¢yaia;) = —ay Jylai = g (2)
we increase the temperature above zero is correspondith fR[, J(r)dr = 1,J(r) > 0.
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LP showed that in the infinite volume limit followed 1,2,... be a configuration of particles in a domain C
by the limit y — 0 the Helmholtz free energy takes the R<Y,d = 2. The energy of the configuratianis
form

1 1
. = —— (g, g -
lim a(p,y) = CElao(p) — 3ap}. @ M@= Z g )+ g Z
Herep is the particle density, is the free energy density « Z Z Z J'(y4)(qi1’qi2’qi39qi4)~ (4)

of the reference system, i.e., the system witk= 0 in (2),
ag is convex inp (by general theorems), and CHx)} is

Dy Fiy i3Fi1,0ly 47F101,02,03

the largest convex lower bound 6f (The dependence of Here ) i
ao on the temperaturgg~! has been suppressed.) For IDaqi.qi) = v T2 (vai. vai) . (5)
a large enough the term in the curly brackets in (3)

INGi . qisqiqi) = v ID(vq; - ) (6)
has a double well shape and the CE corresponds to the Yy \4ii»9i>9is- 4 Y Ydi> Vi)

Gibbs double tangent construction. This is equivalent taang
Maxwell’s equal area rule applied to a van der Waals’
type equatioqn of state Wherepri)t gives the coexistence of JD(r1,r2) 2 0,791, 1, 13,14) 2 0, (7
liquid and vapor phases [17]. are fixed, bounded, translation invariant functions of finite
Following the work of KUH and LP, various attempts range: they vanish whenever any of the distanees-
were made to go beyond the = 0 limit [18,19]. It ;| is larger than some fixed lengtf.
is clear from general arguments, and it follows also The equilibrium properties of this system are specified
explicitly from [14], that ind = 1 there is no phase by a grand canonical ensemble with reciprocal tempera-
transition fory > 0. Straightforward expansions inare  ture 8, chemical potentiak, and suitable boundary condi-
therefore bound to fail fod = 1, in the two phase region. tions (bc), i.e., by the Gibbs measwﬁf%m. To prove
In d > 1 these schemes give plausible, but uncontrolledcoexistence of liquid and vapor phases for sgénand A
approximations. The main difficulty comes from the we have to show that by choosing two different bc, one fa-
fact that the phase transition is a singular event, whoseoring the liquid and another the vapor phase, call them
dependence on the parameteris not at all smooth. To and—, the Gibbs measures obtained in the lithit” R?
overcome this problem requires all the modern machinergescribe two phases differing primarily by their densities,
of Pirogov-Sinai theory built up in the past twenty-five the appropriate order parameter for this transition. We do
years [6,20,21] plus considerable additional effort. this in detail [22] for a particular choice of the interactions
It is the success of such an effort which enables us to @ _
show for some systems i = 2, that their behavior at SO (e r2) = 1Br) N B2l (8)
finite.y >0 is close to r_nfb aty = 0, so that_ a ph_ase JDr1, ra 13, 7) = | Fﬁ:l B(rj)l, (9)
transition in the latter yields a phase transition in the
former for sufficiently smally. Such results have been WhereB(r) is the ball inR? of volume 1 and center, i.e.,
recently obtained for Ising models [20], where one used ? (71, 72) is equal to the overlap volume of the two balls
a version of the Peierls argument, exploiting the spirlof radius 7 ~'/2 and (4/37)~'/% in d = 2,3] centered
flip symmetry of the model. The absence of symmetrie@t 71 and ry. Similarly J®(ri, 2, 73, r4) is equal to the
in our case requires instead the whole machinery ofVerlap volume of four such balls.
the Pirogov-Sinai theory [6,21]. To insure stabilization Theorem—Let B, = (%)5 and By > B. (as below),
against collapse, which would be induced by a Kacthen, for anyB € (8., Bo) there exist functionsy(8)
attractive pair potential, the natural choice made by KUHand A(y, 8) such that fol0 < y < y,(8) the model with
and LP is to replace point particles by hard spheres o/? and J® as in (9) has at least two distinct infinite
similar strongly repulsive pair interactions. Our approachvolume Gibbs measurqsiﬂ. These measures are trans-
however does not work in such a case, as we need lation invariant and ergodic (with respect to space trans-
cluster expansion for the unperturbed reference systemations), with an exponential decay of correlations. They
(i.e., without the Kac interaction) at values of the chemicahave particle densities, respectively, equaptgs - > 0
potential or density for which it is not proven to hold. and p, g+ > py . In the limit y — 0, A(y,B) —
Instead we consider point particles and insure stability\(8), p,.5,- — pp,= and there exist positive constants
by introducing a positive four-body potential of the samec and 6 such that|A(y, 8) — A(B)| + D —<|pyps —
range as the attractive two-body one. The unperturbegg | < cy?.
system is then the free, ideal gas for which the cluster The reason for the particular choice of the interactions
expansion holds trivially. The price is a much more(9) as well as for the appearance Bf§ in the theorem
involved mean field analysis, which requires a speciabre related to the mfb of the system (4) valid when

choice of the form of the interactions. y — 0 (following the limit A / R?). The mean field
We now specify the model, state precisely our resultsequilibrium profiles are functiong*(r) that minimize the
and give a flavor of the proof [22]. Lej = {4;}, i = mean field Gibbs free energy functional,
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Foato) = [ arlPinp) — 11 [ arap) = 5 [ andras® o rptpe

1
+ n dri---drald 9y, or)p(r) - plrg), (10)

where p(r) is a test density profile and the first intengaI with an effective Hamiltonian which is essentially a
gives the entropy contribution to the free energy. discrete version of the mean field free energy functional
The minimizersp*(r) satisfy the mean field equation (10) with p(r) there replaced by,, and balls replaced by
8 Fp.a/8p(r) = 0. The resulting equation is highly non- “lattice balls.” The important effect of this procedure is

linear and not very much is known about its solutionsthat the new effective inverse temperaturggi&’. For y
for general/® and J®. For the particular choice (9) small enough and correspondingly large enough, we are

Eq. (10) simplifies to now in the right setup for the Pirogov-Sinai theory. The
p(r) remainder terms are exponentially decaying multibody
Fpalp) = fdr[T[ln p(r) = 1] = AR(r, p) interactions.

. . The “ground states” of our “lattice system” correspond-
_ L p2 2 p4 ing to the vapor and liquid states are now defined by en-
2! Rirop) + 4 R (r’p)] (11) sembles of configurations having the “close” to the
whereR(r, p) is the average density over a ball of unit mean field vapor and liquid densitipg + andpg . The
volume inR? centered at. It is now easy to show, using analysis of this system is conceptually close to the one
the convexity of the first term, that the minimizers areused in the extension of Pirogov-Sinai theory to continu-
always spatially homogeneous i.e., they correspond to aus (unbounded) spin systems developed in [21]. Our
constant density = 0. For such a density, the Gibbs analysis is actually simpler than that in [21]. Instead
free energy per unit volume given in (10) takes the form of using a cluster expansion which requires dealing with
_ p-1 1y _ 2 4 interactions among many Peierl’s type contours separat-
flp)y =B "pnp = 1) = Ap = p7/2 + p7/24. ing “bubbles” of one ground state inside another, brought
(12)  about by the extended range of the potentials, we use a
The minimizing density will therefore be a solution of the more analytic approach. We show in particular that the
equation restricted effective Hamiltonian giving the Gibbs mea-
fp)=B8"Inp —A—p + p’/6=0. (13)  sures of the lattice system corresponding to ther —
ground state ensembles satisfy the Dobrushin uniqueness
condition. We then show that this remains true even af-
ter the addition of contours to the ground states. From
this follows the exponential decay of correlations in the
liquid and vapor phases, f@. < 8 < By, stated in the
theorem. We expect to prove that similar results will hold
even at lower temperature8, = B, but, as already men-
tioned, the proof is now more difficult: technically, the
. i ; equation satisfied by the stationary points of the free en-
which fﬁg’?}@’i) = 2(Bpp.=)"", such that the diagonal ergy functional (10) is no longer a contraction and the
part of 5755,071p—p,. is positive and dominates the criteria for Dobrushin uniqueness is no longer satisfied by
nondiagonal ones. Whef > B, the second variational the lattice system.
derivative of F x(g) is still positive atp = pg + but the J.L. and A. M. were supported in part by NSF Grant

diagonal part no longer dominates. The former case if§jo. DMR 95-23266 and AFOSR Grant No. 4-26435.
much simpler to analyze and we have so far worked out

all the details only for that case.

To prove our theorem we carry out a controlled
Pirogov-Sinai cluster expansion about the= 0 mean
field state. The first step in this analysis is a “coars
graining,” in which we patrtition space into cubes of size
with [ very large compared to the interparticle spacing but [4] L. Onsager, Phys. Rew5, 117 (1944).

small compared toy~'. Given a particle conflgurathn [5] R.J. BaxterExactly Solved Models in Statistical Mechan-
g we call{p.}, x the centers of the cubes, the particle ics (Academic Press, London, New York, 1982).
densities in each cube. We then show that the measurgs] s. A. Pirogov and Ya. G. Sinai, Theor. Math. Phgs, 358
over the{p,}, obtained by integrating out all the other (1975);25, 1185 (1975).

variables is, to within controllable errors, a Gibbs measure[7] D. Ruelle, Phys. Rev. LetR7, 1040 (1971).

This equation has a unique solution for alwhen 8 =

Be = (3/2)%%, while for B > B, there exists a\(B)
such that there are two minimizing solutiongs + >
pp,—~ Wwith A(B) and pg - the same as in the last
statement of the theorem. In other wordgép) is convex
for B = B. and has a double well shape of equal
height for 8 > B., A = A(B). Moreover, there is a
Bo > B¢, given by the smallest value o8 > B. for
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