## Rigorous integration of differential inclusions.

Tomasz Kapela<sup>a</sup>

<sup>a</sup> Jagiellonian University, Kraków, Poland

We study the following nonautonomous ODE

$$x'(t) = f(x(t), y(t)), \quad x(0) = x_0$$

where  $x \in \mathbb{R}^n$ ,  $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$  is  $C^1$  and  $y : \mathbb{R} \supset D \to \mathbb{R}^m$ . Assume that we have some knowledge about y(t), for example  $|y(t)| < \epsilon$  for  $0 \le t \le T$ . We would like to find a rigorous enclosure for x(t).

We describe a modification of the Lohner algorithm which allows us effectively compute rigorous upper bounds for:

- reachable sets for control systems,
- solutions of ordinary differential inclusions,
- perturbations of ODEs.

Two different approaches of handling perturbations: first based on componentwise estimates and the second one using logarithmic norms are compared and merged into one method.