Rigorous verification of cocoon bifurcations in the Michelson system.

Hiroshi Kokubu a , Daniel Wilczak b,c , and Piotr Zgliczyński c

^aDepartment of Mathematics, Kyoto University, Kyoto 606-8502, Japan

^bDepartment of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway.

^cInstitute of Computer Science, Jagiellonian University, Nawojki 11, 30-072 Kraków, Poland

We present [KWZ] a proof of the existence of cocoon bifurcations for the Michelson system

 $\dot{x} = y, \quad \dot{y} = z, \quad \dot{z} = c^2 - y - \frac{1}{2}x^2,$

where $(x,y,z) \in \mathbb{R}^3$ and $c \in \mathbb{R}_+$ is a parameter, based on the theory given in [DIK]. The main difficulty lies in the verification of the (topological) transversality of the unstable set W^u of a nonyperbolic fixed point P for suitable Poincaré map and the stable manifold W^s of an equilibrium. Rigorous integration of second order variational equations [WZ] is used to prove the existence of a Lyapunov function in a neighborhood of P which gives an estimation and some monotonicity properties of W^u . Then, the existence of topologically transverse intersection of W^u and W^s is proven by means of covering relations and cone conditions tools.

These new techniques developed in this paper will have broader applicability to similar global bifurcation problems.

- [DIK] F. Dumortier, S. Ibáñez, and H. Kokubu, Cocoon bifurcation in three dimensional reversible vector fields, Nonlinearity 19 (2006), 305–328.
- [KWZ] H. Kokubu, D. Wilczak, P. Zgliczyński, Rigorous verification of cocoon bifurcations in the Michelson system, Nonlinearity, 20 (2007), 2147–2174.
 - [WZ] D. Wilczak, P. Zgliczyński, C^r -Lohner algorithm, in review.