1. Use Green’s Theorem to calculate the integral \(\oint_C \vec{F} \cdot d\vec{s} \) for the vector field

\[
\vec{F} = (2xy + x^4, 3xy^2 - \sin(y))
\]

and the curve
2. Use Stokes' Theorem to evaluate the integral

\[\iint_S \text{curl}(\vec{F}) \cdot d\vec{S} \]

for the surface \(S \) with outward normal vector and vector field \(\vec{F} \) below, where the boundary of \(S \) is the ellipse \(4x^2 + y^2 = 16 \) in the \(xy \)-plane. This boundary can be parametrized as \(c(t) = (2\cos(t), 4\sin(t), 0) \).

\[\vec{F} = \langle 3x + 4zx^2, x + y + z, x^2 + y^2 + z^2 \rangle \]