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“It is time for this discovery to stay discov-
ered.” (Lloyd, Nature Physics, Nov. 2006)



“It is time for this discovery to stay discov-
ered.” (Lloyd, Nature Physics, Nov. 2006)

“When I discovered it, it stayed discovered.”

(Larry Shepp)
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Microcanonical(142[large]) = Canonical(1)

ps =exp(—BH1)/z  on K1)

PEs = Pry s/ D = Ppogaiacpis/D on HUT2) (D = dimH,s)

(pp.s)1 =t (pps) ~pg (B E)

p1 =tr(@p, on H(D), reduced density matrix, etc.



Canonical Typicality

Fix W & HE,(;.

pV = [W)(w| on HO+)

(p¥)1 =trPpV ~ py

for typical W, i.e., for the overwhelming majority of W’'s in HE,(g,
defined in terms of the uniform distribution ug s (the micro-

canonical measure) on the unit sphere (Hgs) of Hg s.

Key: entanglement



Classically, randomness in vields randomness
out. In quantum mechanics, we can have
“randomness out, without randomness in.”
With quantum mechanics we have ‘‘sponta-
neous uncertainty.” But the uncertainty is
even greater than it seems, and that is the

main issue I want to address.



Density matrix
and random wave function

i o= [, u(d)|e) (W

probability measure on the unit sphere . of a Hilbert space H
— density matrix on that Hilbert space

e onto
e Mmany-to-one

Examplef pEs = pu for p =ups and for u = ueEZ%
where u;% is the uniform distribution over the energy eigenstates
in HE,5' ,



“In equilibrium the state of a system is ran-
dom. In quantum mechanics the state of a
system is given by its wave function. If the
system is in equilibrium, with density matrix
et Its wave function should be random, with
some distribution p on . What is u?"
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GAP Measures, GAP(p)

Gaussian
Adjusted

Projected
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Density Matrix and Covariance

p= pu = /H u(dyp)|) (| < w has covariance p

(assuming, as we will more or less always do, that p has mean
0.)

(Slold)) = | u(dw)(@l)(wlo)

Remark: [ p(d)||9)12 = fpg u(dip)tr|e) (] = trp = 1.
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G(p)

G(p) is Gaussian, with covariance p.
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G(p)

G(p) is Gaussian, with covariance p. More explicitly,
for
p = 2_ pnln)(n|
n
G(p) is the distribution of

WG =35 Zy|n)
n

where the Z, are independent complex-Gaussian with

(mean 0 and) variance E(|Zn|2) = pn.
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GA(p)

G(p) is not supported by .. We would therefore like
to project G(p) onto .. But doing so would alter the

covariance—unless we first “adjust” G(p):

GA(p)(dp) = ||9]|*G(p) (dep)

(Since /G(p)(ahp)nzp”2 = 1, GA(p) is properly nor-
malized; it is a probability measure on H).
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GAP(p)

GAP(p) is the image of GA(p) under the “projection”
Y = /|| to .
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GAP(p)

GAP(p) is the image of GA(p) under the “projection”
v — /||| to . It is the distribution of

GAP _ \,GA ;|\ yGA
WA =W/

where WGA has distribution GA(p).
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Examples = spun)(nl)

n

e GAP(pg) < W& = > Zun) with |n) the energy eigenstates
and E(|Zn|?) = e PEn/Z (for both G and for GAP).

e GAP(pps) = ugs

e Not GAP: FEIG(p)(Im)) = pm

n

FEIG(p) is supported by the set of eigenvectors of p.
GAP(p)({eigenvectors of p}) = 0.
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Properties of GAP(p)

® PGAP(p) = P

e GAP(p) is covariant:

GAP(UpU*) = U[GAP(p)]

In particular, GAP(pg), pg o< exp (—BH), is a stationary mea-
sure for the Schrodinger dynamics generated by H.

e GAP is hereditary: [GAP(p() & p(@)] = GAP(p(V)
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-
t

ne wave function of a subsystem:

ne conditional wave function W

For W ¢ (HD) @ H(2), and {én} a basis of H(2), Wy is random
vector in ‘H(1) taking on the value

W1 = (o) W)/ |[(dn|W)]| € #(HD)

with probability |[(¢n|W)||2. (W1 depends on the choice of basis.)

In other words, for ¥ =3 1Yn ® ¢n

Prob(W1 = Yn/||Yn|]) = Hlbn”Q
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U can be random: For any probability mea-
sure p on H(1) @ H(2),

u1 = the distribution of W,y

when W has distribution wu.
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Corollary of Property 3 (using equivalence of ensem-

bles and and the continuity of GAP(p)):

(ups)1 = GAP(pg)

PES péHQ) = pg) ® ng>

up5 = GAP(pp5) ~ GAP (p§" ® p)

PB — Pg3
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GAP Typicality
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T he wave function of a subsystem of a large system is

typically GAP-distributed (“large”: dimH(2 > dim H(1)):

v Y (V)

! !
vy I gAP[(pY)4]

dist(W1) ~ GAP[(pY)1]

for typical W e .Z(H1) @ H(2)).
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Too weak. (p¥)7 is typically oc I(1)) For given p(1), we need to

condition on the event that W is such that (p¥); = p(1).

v — oV L p)

| !
v, 2 gAP(p™W)

dist(W1) ~ GAP(p1))

for typical W € .7 (p(1)) = {w e S(HD @ H) | (oY), = p(1>}.
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Corollary:

e For any W € .Z(H) @ H(2)

dist(W1) ~ GAP[(p")1]

for a typical choice of basis for H(2),

e T hus, using canonical typicality: For a typical W € Hg
diSt(Wl) ~ GAP(pB)

for a typical choice of basis for H(2),
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GAP typicality —
GAP is the “canonical” wave function
distribution.
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Sketch of Proofs
H1) = Z’;En n) (n

pES=D"13 P 2 @ In)nl
n E—En,5

p1 = D71 > (dim H](EQ_)E%(;) In){n| ~ pg

. . _95 —
since dimH'? . . ~ eSE-E) o ¢ i = P
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Proof of CT

n

P, = S X |m)(2)
E—FE,<EX<E_E,46
We may assume that the X, are i.i.d. complex-Gaussian, with
E(|Xnm|?) = 1/D. Then

(%), = 2 {®ml®n) In)(m| = 3 pn ) (r

n.,m

. 2
E—E,<ESY<E-E,+s
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Proof of GT

Schmidt decomposition (biorthonormal decomposition)
For W e HD @ H@) | dimHD) < dim 3,

there exists a basis ¢, of H(1) and an o.n. system xy, for H(2)
such that
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Schmidt decomposition and (,o"’)l

(p"’)l = p1) =3 pnin¥(n| < W has SD of the form

W => /pn|n) ® xn
= .7 (V)

Ug(p(1)y the o.n. system xj, is random, with distribution

invariant under the action of the unitary group of H(2),



Lemma: Fix a basis ¢, of H(2) . The empirical distribution
of \/dim H(Q)\Ifl, assigning equal probabilities 1/ dim H(?) to the
vectors \/dim H2) (G| W) € HD), is G(p(1)).

Proof:

xn =3 Xum b/ dim HP

Ug(p(1)y the X, are approximately i.i.d. complex-Gaussian,
with E(| Xnm|?) = 1.
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With this approximation, the sequence of vectors

is i.i.d., with common distribution that of }°,, Z, |n) where the Z,
are independent complex-Gaussian with E(|Z,|?) = pn.

LLN = the empirical distribution of the sequence is the theoret-
ical distribution G(p(1)).

Empirical distribution, improper normalization, G <« quantum
distribution, proper normalization, GAP.
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In the new, post-1925 quantum theory the ‘anarchist’ position
became dominant and modern quantum physics, in its ‘Copen-
hagen interpretation’, became one of the main standard bearers
of philosophical obscurantism. In the new theory Bohr's noto-
rious ‘complementarity principle’ enthroned [weak] inconsistency
as a basic ultimate feature of nature, and merged subjectivist
positivism and antilogical dialectic and even ordinary language
philosophy into one unholy alliance. After 1925 Bohr and his as-
sociates introduced a new and unprecedented lowering of critical
standards for scientific theories. This led to a defeat of reason
within modern physics and to an anarchist cult of incomprehen-
sible chaos. (Lakatos, Criticism and the Growth of Knowledge,
p. 145, 1965)
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