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Canonical Typicality

• Schrödinger (1927)

• Bocchieri and Loinger (1959)

• Lloyd (1988)

• Tasaki (1998)

• Gemmer and Mahler (2003)

• G, Lebowitz, Tumulka, and Zangh̀ı (2006)

• Popescu, Short, and Winter (2006)
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“It is time for this discovery to stay discov-

ered.” (Lloyd, Nature Physics, Nov. 2006)

“When I discovered it, it stayed discovered.”

(Larry Shepp)
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                                   HB = H(2)                                    

HS = H(1)

H(1+2) = H(1) +H(2) = H(1) ⊗ I(2) +H(2) ⊗ I(1)

on

H(1+2) = H(1) ⊗H(2)
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Microcanonical(1+2[large]) ⇒ Canonical(1)

ρβ = exp(−βH(1))/Z on H(1)

ρE,δ = PHE,δ/D = P
E≤H(1+2)≤E+δ

/D on H(1+2) (D = dimHE,δ)

(ρE,δ)1 = tr(2)(ρE,δ) ' ρβ (β ↔ E)

ρ1 = tr(2)ρ, on H(1), reduced density matrix, etc.
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Canonical Typicality

Fix Ψ ∈ HE,δ.

ρΨ = |Ψ〉〈Ψ| on H(1+2)

(ρΨ)1 = tr(2)ρΨ ' ρβ
for typical Ψ, i.e., for the overwhelming majority of Ψ’s in HE,δ,

defined in terms of the uniform distribution uE,δ (the micro-

canonical measure) on the unit sphere S (HE,δ) of HE,δ.

Key: entanglement
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Classically, randomness in yields randomness

out. In quantum mechanics, we can have

“randomness out, without randomness in.”

With quantum mechanics we have “sponta-

neous uncertainty.” But the uncertainty is

even greater than it seems, and that is the

main issue I want to address.
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Density matrix

and random wave function

µ 7→ ρµ =
∫
S
µ(dψ)|ψ〉〈ψ|

probability measure on the unit sphere S of a Hilbert space H
7→ density matrix on that Hilbert space

• onto

• many-to-one

Example: ρE,δ = ρµ for µ = uE,δ and for µ = u
eig
E,δ

where ueigE,δ is the uniform distribution over the energy eigenstates
in HE,δ.
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“In equilibrium the state of a system is ran-

dom. In quantum mechanics the state of a

system is given by its wave function. If the

system is in equilibrium, with density matrix

ρβ, its wave function should be random, with

some distribution µ on S . What is µ?”
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GAP Measures, GAP (ρ)

Gaussian

Adjusted

Projected
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Density Matrix and Covariance

ρ = ρµ =
∫
H
µ(dψ)|ψ〉〈ψ| ↔ µ has covariance ρ

.

(assuming, as we will more or less always do, that µ has mean

0.)

〈φ|ρ|φ′〉 =
∫
H
µ(dψ)〈φ|ψ〉〈ψ|φ′〉

Remark:
∫
H µ(dψ)‖ψ‖2 =

∫
H µ(dψ)tr|ψ〉〈ψ| = trρ = 1.
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G(ρ)
G(ρ) is Gaussian, with covariance ρ. More explicitly,

for

ρ =
∑
n
ρn|n〉〈n|

G(ρ) is the distribution of

ΨG =
∑
n
Zn|n〉

where the Zn are independent complex-Gaussian with

(mean 0 and) variance E(|Zn|2) = ρn.
13



G(ρ)
G(ρ) is Gaussian, with covariance ρ. More explicitly,

for

ρ =
∑
n
ρn|n〉〈n|

G(ρ) is the distribution of

ΨG =
∑
n
Zn|n〉

where the Zn are independent complex-Gaussian with

(mean 0 and) variance E(|Zn|2) = ρn.
13-a



GA(ρ)
G(ρ) is not supported by S . We would therefore like

to project G(ρ) onto S . But doing so would alter the

covariance—unless we first “adjust” G(ρ):

GA(ρ)(dψ) = ‖ψ‖2G(ρ)(dψ)

(Since
∫
G(ρ)(dψ)‖ψ‖2 = 1, GA(ρ) is properly nor-

malized; it is a probability measure on H).
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GAP (ρ)
GAP (ρ) is the image of GA(ρ) under the “projection”

ψ 7→ ψ/‖ψ‖ to S . It is the distribution of

ΨGAP = ΨGA/‖ΨGA‖

where ΨGA has distribution GA(ρ).
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E
(
|ΨGAP 〉〈ΨGAP |

)
=

∫
G(ρ)(dψ)‖ψ‖2

|ψ〉〈ψ|
‖ψ‖2

= ρ
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Examples (ρ =
∑
n
ρn|n〉〈n|)

• GAP (ρβ) ↔ ΨG =
∑
Zn|n〉 with |n〉 the energy eigenstates

and E(|Zn|2) = e−βEn/Z (for both G and for GAP).

• GAP (ρE,δ) = uE,δ

• Not GAP: EIG(ρ)(|m〉) = ρm

←→ Ψ =
∑
n
Zn|n〉, Zn = δnm with probability ρm

EIG(ρ) is supported by the set of eigenvectors of ρ.
GAP (ρ)({eigenvectors of ρ}) = 0.
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Properties of GAP (ρ)

• ρGAP (ρ) = ρ

• GAP (ρ) is covariant:

GAP (UρU∗) = U [GAP (ρ)]

In particular, GAP (ρβ), ρβ ∝ exp (−βH), is a stationary mea-

sure for the Schrödinger dynamics generated by H.

• GAP is hereditary:
[
GAP (ρ(1) ⊗ ρ(2))

]
1

= GAP (ρ(1))
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The wave function of a subsystem:

the conditional wave function Ψ1

For Ψ ∈ S (H(1)⊗H(2)), and {φn} a basis of H(2), Ψ1 is random

vector in H(1), taking on the value

Ψ1 = 〈φn|Ψ〉/‖〈φn|Ψ〉‖ ∈ S (H(1))

with probability ‖〈φn|Ψ〉‖2. (Ψ1 depends on the choice of basis.)

In other words, for Ψ =
∑
nψn ⊗ φn

Prob(Ψ1 = ψn/‖ψn‖) = ‖ψn‖2.
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Ψ can be random: For any probability mea-

sure µ on H(1) ⊗H(2),

µ1 = the distribution of Ψ1

when Ψ has distribution µ.
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Corollary of Property 3 (using equivalence of ensem-

bles and and the continuity of GAP (ρ)):

(uE,δ)1 ' GAP (ρβ)

ρE,δ ' ρ
(1+2)
β = ρ

(1)
β ⊗ ρ(2)

β

uE,δ = GAP (ρE,δ) ' GAP
(
ρ
(1)
β ⊗ ρ(2)

β

)

ρβ = ρ
(1)
β
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GAP Typicality
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The wave function of a subsystem of a large system is

typically GAP-distributed (“large”: dimH(2) � dimH(1)):

Ψ → ρΨ → (ρΨ)1
↓ ↓
Ψ1

dist−→ GAP [(ρΨ)1]

dist(Ψ1) ' GAP [(ρΨ)1]

for typical Ψ ∈ S (H(1) ⊗H(2)).
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Too weak. (ρΨ)1 is typically ∝ I(1).) For given ρ(1), we need to

condition on the event that Ψ is such that (ρΨ)1 = ρ(1).

Ψ → ρΨ 1→ ρ(1)

↓ ↓
Ψ1

dist−→ GAP (ρ(1))

dist(Ψ1) ' GAP (ρ(1))

for typical Ψ ∈ S (ρ(1)) =
{
Ψ ∈ S (H(1) ⊗H(2)) | (ρΨ)1 = ρ(1)

}
.
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Corollary:

• For any Ψ ∈ S (H(1) ⊗H(2))

dist(Ψ1) ' GAP [(ρΨ)1]

for a typical choice of basis for H(2).

• Thus, using canonical typicality: For a typical Ψ ∈ HE,δ

dist(Ψ1) ' GAP (ρβ)

for a typical choice of basis for H(2).
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GAP typicality →
GAP is the “canonical” wave function

distribution.
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Sketch of Proofs

H(1) =
∑
n
En |n〉〈n|

ρE,δ = D−1∑
n
P
H(2)
E−En, δ

⊗ |n〉〈n|

ρ1 = D−1∑
n

(
dimH(2)

E−En, δ

)
|n〉〈n| ' ρβ

since dimH(2)
E−En, δ

∼ eS(E−EN) ∝ e−
∂S

∂E
En = e−βEn
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Proof of CT

Ψ =
∑
n
|n〉 ⊗Φn

Φn =
∑

E−En≤E(2)
m ≤E−En+δ

Xnm |m〉(2)

We may assume that the Xnm are i.i.d. complex-Gaussian, with

E(|Xnm|2) = 1/D. Then(
ρΨ

)
1

=
∑
n,m
〈Φm|Φn〉 |n〉〈m| '

∑
n
ρn |n〉〈n|

ρn =
∑

E−En≤E(2)
m ≤E−En+δ

|Xnm|2 ' dimH(2)
E−En, δ/D
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Proof of GT

Schmidt decomposition (biorthonormal decomposition)

For Ψ ∈ H(1) ⊗H(2), dimH(1) ≤ dimH(2),

there exists a basis ψn of H(1) and an o.n. system χn for H(2)

such that

Ψ =
∑
n
cnψn ⊗ χn, cn ≥ 0.
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Schmidt decomposition and
(
ρΨ

)
1

(
ρΨ

)
1

= ρ(1) =
∑
n ρn |n〉〈n| ↔ Ψ has SD of the form

Ψ =
∑
n

√
ρn |n〉 ⊗ χn

⇒ S (ρ(1))

uS (ρ(1)) ↔ the o.n. system χn is random, with distribution

invariant under the action of the unitary group of H(2).



Lemma: Fix a basis φm of H(2). The empirical distribution

of
√

dimH(2)Ψ1, assigning equal probabilities 1/dimH(2) to the

vectors
√

dimH(2)〈φm|Ψ〉 ∈ H(1), is G(ρ(1)).

Proof:

χn =
∑
m
Xnm φm/

√
dimH(2)

uS (ρ(1)) → the Xnm are approximately i.i.d. complex-Gaussian,

with E(|Xnm|2) = 1.
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With this approximation, the sequence of vectors√
dimH(2)〈φm|Ψ〉 =

∑
n

√
ρnXnm |n〉 =

∑
n
Znm|n〉 m = 1, . . . ,dimH(2)

is i.i.d., with common distribution that of
∑
nZn |n〉 where the Zn

are independent complex-Gaussian with E(|Zn|2) = ρn.

LLN ⇒ the empirical distribution of the sequence is the theoret-

ical distribution G(ρ(1)).

Empirical distribution, improper normalization, G ↔ quantum

distribution, proper normalization, GAP.

31



In the new, post-1925 quantum theory the ‘anarchist’ position

became dominant and modern quantum physics, in its ‘Copen-

hagen interpretation’, became one of the main standard bearers

of philosophical obscurantism. In the new theory Bohr’s noto-

rious ‘complementarity principle’ enthroned [weak] inconsistency

as a basic ultimate feature of nature, and merged subjectivist

positivism and antilogical dialectic and even ordinary language

philosophy into one unholy alliance. After 1925 Bohr and his as-

sociates introduced a new and unprecedented lowering of critical

standards for scientific theories. This led to a defeat of reason

within modern physics and to an anarchist cult of incomprehen-

sible chaos. (Lakatos, Criticism and the Growth of Knowledge,

p. 145, 1965)
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