Please note. This is NOT the formula sheet. It is intended as a study aid only.
Volume of Solids of Revolution Summary

METHOD	Revabout $x-$ axis	Rev about y-axis
$W A S H E R S$	$\pi \int_{a}^{b}\left[\left(R_{o}(x)\right)^{2}-\left(r_{I}(x)\right)^{2}\right] d x$	$\pi \int_{c}^{d}\left[\left(R_{o}(y)\right)^{2}-\left(r_{I}(y)\right)^{2}\right] d y$
$S H E L L S$	$2 \pi \int_{c}^{d} y h(y) d y$	$2 \pi \int_{a}^{b} x h(x) d x$

The "a" and "b" limits of integration are values of x. The "c" and "d" limits of integration are values of y.
For the Washer Method " R_{o} " is the "Outer Radius" which is the distance from the axis of revolution to the outer wall of the solid, while " r_{I} " is the "Inner Radius" which is the distance from the axis of revolution to the inner wall of the solid.

When the axis of revolution is the x-axis, R_{o} and r_{I} are written as functions of x.
When the axis of revolution is the y-axis, R_{o} and r_{I} are written as functions of y.
For the Shell Method " h " is the "height" of the cylindrical shell.
When the axis of revolution is the x-axis, the "height" of the shell is measured with respect to the y-axis. In this case, " h " is written as a function of y.
When the axis of revolution is the y-axis, the "height" of the shell is measured with respect to the x -axis. In this case, " h " is written as a function of x .

Radical - Trigonometric Substitution Summary

Integral contains	substitute for x	substitute for $d x$
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$	$d x=a \cos \theta d \theta$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$	$d x=a \sec \theta \tan \theta d \theta$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$	$d x=a \sec ^{2} \theta d \theta$

