Please note. This is **NOT** the formula sheet. It is intended as a study aid only.

Volume of Solids of Revolution Summary

METHOD	$Rev\ about\ x-axis$	$Rev\ about\ y-axis$
WASHERS	$\pi \int_{a}^{b} \left[(R_{o}(x))^{2} - (r_{I}(x))^{2} \right] dx$	$\pi \int_{c}^{d} \left[\left(R_{o}(y) \right)^{2} - \left(r_{I}(y) \right)^{2} \right] dy$
SHELLS	$2\pi \int_{c}^{d} y h(y) dy$	$2\pi \int_{a}^{b} x h(x) dx$

The "a" and "b" limits of integration are values of x. The "c" and "d" limits of integration are values of y.

For the **Washer Method** " R_o " is the "Outer Radius" which is the distance from the axis of revolution to the outer wall of the solid, while " r_I " is the "Inner Radius" which is the distance from the axis of revolution to the inner wall of the solid.

When the axis of revolution is the x-axis, R_o and r_I are written as functions of x.

When the axis of revolution is the y-axis, R_o and r_I are written as functions of y.

For the **Shell Method** "h" is the "height" of the cylindrical shell.

When the axis of revolution is the x-axis, the "height" of the shell is measured with respect to the y-axis. In this case, "h" is written as a function of y.

When the axis of revolution is the y-axis, the "height" of the shell is measured with respect to the x-axis. In this case, "h" is written as a function of x.

Radical - Trigonometric Substitution Summary

Integral contains	$substitute\ for\ x$	$substitute\ for\ dx$
$\sqrt{a^2-x^2}$	$x = a\sin\theta$	$dx = a\cos\theta d\theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$dx = a \sec \theta \tan \theta d\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$dx = a\sec^2\theta d\theta$