Legendre’s formula

\[\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \]

is the simplest instance of the \(p \)-adic valuation for a sequence defined by a first order recurrence

\[t_n = Q(n)t_{n-1}. \]

Here \(Q \) is a polynomial with integer coefficients and \(s_p(n) \) is the sum of the digits of \(n \) in base \(p \).

In this talk we describe the asymptotics of \(\nu_p(t_n) \) as \(n \to \infty \).

The extension to the case

\[t_n = Q_1(n)t_{n-1} + Q_2(n)t_{n-2} \]

will be illustrated with the \(p \)-adic valuation of Stirling numbers.

Joint work with T. Amdeberhan, Dante Manna and Luis Medina.