Math 351

Solutions to review problems for Final Exam December 11, 2010

#1 (a) Find the greatest common divisor of 182 and 507 and write it in the form $a(182) + b(507)$ where a and b are integers.

Solution:

$$507 - 2(182) = 143,$$
$$182 - 143 = 39,$$
$$143 - 3(39) = 26,$$
$$39 - 26 = 13,$$
$$26 - 2(13) = 0.$$

Therefore $(182, 507) = 13$ since this is the last nonzero remainder. Furthermore,

(b) Find the greatest common divisor of $x^4 + x^2 - 20$ and $x^4 - 4x^3 + 5x^2 - 4x + 4$ in $\mathbb{Q}[x]$.

Solution:

$$(x^4 - 4x^3 + 5x^2 - 4x + 4) - (x^4 + x^2 - 20) = (-4x^3 + 4x^2 - 4x + 24),$$
$$(x^4 + x^2 - 20) - (-x/4 - 1/4)(-4x^3 + 4x^2 - 4x + 24) = (x^2 + 5x - 14),$$
$$(-4x^3 + 4x^2 - 4x + 24) - (-4x + 24)(x^2 + 5x - 14) = (-180x + 360),$$
$$(x^2 + 5x - 14) - (-x/180 - 7/180)(-180x + 360) = 0.$$

Therefore $(x^4 - 4x^3 + 5x^2 - 4x + 4, x^4 + x^2 - 20) = x - 2$. This is the monic polynomial which is an associate of the last nonzero remainder.

(c) Find the greatest common divisor of $x^5 + x^4 + x^3 + 1$ and $x^5 + x + 1$ in $\mathbb{Z}_2[x]$ and write it in the form $a(x)(x^5 + x^4 + x^3 + 1) + b(x)(x^5 + x + 1)$ where $a(x), b(x) \in \mathbb{Z}_2[x]$.

Solution:

$$(x^5 + x^4 + x^3 + 1) + (x^5 + x + 1) = (x^4 + x^3 + x),$$
$$(x^5 + x + 1) + (x + 1)(x^4 + x^3 + x) = (x^3 + x^2 + 1),$$
$$(x^4 + x^3 + x) + x(x^3 + x^2 + 1) = 0.$$

Therefore $(x^5 + x^4 + x^3 + 1, x^5 + x + 1) = x^3 + x^2 + 1$ since this is the last nonzero remainder. Furthermore,

$$(x^3 + x^2 + 1) = (x^5 + x + 1) + (x + 1)(x^4 + x^3 + x) =$$
\[(x^5 + x + 1) + (x + 1)((x^5 + x^4 + x^3 + 1) + (x^5 + x + 1)) = \]
\[x(x^5 + x + 1) + (x + 1)(x^5 + x^4 + x^3 + 1). \]

\#2 (a) Let \(R \) be a commutative ring with unit and \(a \in R \). Recall that \((a) \) denotes \(\{ar \mid r \in R \} \). Prove that \((a) \) is an ideal in \(R \).

Solution: \(0 = a0 \in (a) \), so \((a) \neq \emptyset \). Let \(x_1, x_2 \in (a), r \in R \). Then \(x_1 = as_1, x_2 = as_2 \) for some \(s_1, s_2 \in R \). Then \(x_1 + x_2 = as_1 - as_2 = a(s_1 - s_2) \in (a) \), \(x_1r = (ax_1)r = a(s_1r) \in (a) \), and \(rx_1 = x_1r \in (a) \). Thus \((a) \) is an ideal.

(b) Let \(F \) be a field and \(I \) be an ideal in \(F[x] \). Prove that \(I = (f(x)) \) for some \(f(x) \in F[x] \).

Solution: If \(I = \{0\} \), then \(I = (0) \) and the result holds. If \(I \neq \{0\} \), then \(I \) contains a nonzero element and so the set \(J = \{\text{deg}(g(x)) \mid g(x) \in I, g(x) \neq 0\} \) is a nonempty set of nonnegative integers. Therefore \(J \) contains a smallest element, say \(m \). Let \(f(x) \in I \) be of degree \(m \). Then, \((f(x)) \subseteq I \). Let \(g(x) \in I \). Then, by the division algorithm,

\[g(x) = f(x)q(x) + r(x) \]

for some polynomials \(q(x) \) and \(r(x) \) with \(r(x) = 0 \) or \(\text{deg}(r(x)) < \text{deg}(f(x)) = m \). Now

\[r(x) = g(x) - f(x)q(x) \in I. \]

If \(r(x) \neq 0 \), then \(\text{deg}(r(x)) \in J \), contradicting the fact that \(m \) is the smallest element of \(J \). Thus \(r(x) = 0 \) so \(g(x) = f(x)q(x) \in (f(x)) \). Thus \(I \subseteq (f(x)) \) and so \(I = (f(x)) \).

(c) Give an example of a commutative ring with unit \(R \) and an ideal \(I \) in \(R \) which is not equal to \((a) \) for any \(a \in R \).

Solution: Let \(R = \mathbb{Z}[x] \) and let \(I \) be the set of all polynomials in \(\mathbb{Z}[x] \) with even constant term. Then \(I \) is an ideal, \(2 \in I \) and \(x \in I \). If \(I = (a) \), then \(a \) divides \(2 \) so \(a \) is a constant polynomial. Since \((a) = (|a|) \) we may assume that \(a = 1 \) or \(2 \). But \(1 \notin I \) (since \(1 \) is not even), so \(a = 2 \). But \(x \in I \) and \(2 \) does not divide \(x \). This contradiction shows that \(I = (a) \) is impossible.

\#3 Let \(R \) be a ring and \(S \) be a subring in \(R \). Suppose that whenever \(a, a_1, b, b_1 \in R \) satisfy \(a - a_1 \in S \) and \(b - b_1 \in S \) we have \(ab - a_1b_1 \in S \). Prove that \(S \) is an ideal in \(R \).

Solution: Since \(S \) is a subring, we only need to show that if \(s \in S \) and \(r \in R \), then \(rs \in S \) and \(sr \in S \). First let \(a = a_1 = r, b = s, b_1 = 0 \). Then \(a - a_1 = 0 \in S \) and \(b - b_1 = s = s \in S \). Hence \(ab - a_1b_1 = rs - 0 = rs \in S \). Next let \(a = s, a_1 = 0 \) and \(b = b_1 = r \). Then \(a - a_1 = s - 0 \in S \) and \(b - b_1 = r - r = 0 \in S \). Hence \(ab - a_1b_1 = sr - 0r = sr \in S \).

\#4 (a) Let \(F \) be a field. Prove that the only units in \(F[x] \) are the nonzero constant polynomials.

Solution: If \(f(x) \) is a unit, then \(f(x)g(x) = 1 \) for some \(g(x) \). Then both \(f(x) \) and \(g(x) \) must be nonzero. Furthermore, we have \(\text{deg}(f(x)g(x)) = \text{deg}(f(x)) + \text{deg}(g(x)) \)
for any nonzero \(f(x), g(x) \in F[x] \). Since \(\text{deg}(1) = 0 \) this shows that if \(f(x)g(x) = 1 \)
then \(\text{deg}(f(x)) = \text{deg}(g(x)) = 0 \). This means that \(f(x) \) and \(g(x) \) are nonzero constant
polynomials.

(b) What are the units in \(\mathbb{Z}[x] \)? Why?

Solution: The argument in the previous part shows that any unit must be a constant
polynomial, hence a nonzero integer. The only integers that are units (in \(\mathbb{Z} \)) are 1 and -1.

(c) What are the units in \(\mathbb{Z} \times \mathbb{Z} \)? Why?

Solution: The identity element in \(\mathbb{Z} \times \mathbb{Z} \) is \((1,1)\). Thus if \((a,b)\) is a unit in \(\mathbb{Z} \times \mathbb{Z} \) we must
have \((ac,bd) = (a,b)(c,d) = (1,1)\) for some \(c,d \in \mathbb{Z}\). Thus \(a\) and \(b\) are units in \(\mathbb{Z} \). Using
the result of the previous part, we see that the units in \(\mathbb{Z} \times \mathbb{Z} \) are \((1,1),(1,-1),(-1,1)\)
and \((-1,-1)\).

#5 Let \(R \) be a ring and \(I \) be an ideal in \(R \). Let \(J \) be a subring of \(R/I \). Prove that there
is some subring \(K \) of \(R \) such that \(K \supseteq I \) and \(J = K/I \). Then show that \(J \) is an ideal in
\(R/I \) if and only if \(K \) is an ideal in \(R \). Finally, show that if \(J \) is an ideal then \((R/I)/J \) is
isomorphic to \(R/K \).

Solution: Let \(K = \{ r \in R | r + I \in J \} \). Then \(0 \in K \), so \(K \neq \emptyset \). If \(r_1, r_2 \in K \), then
\(r_1 + I, r_2 + I \in J \) and so \((r_1 - r_2) + I = (r_1 + I) - (r_2 + I) \in J \) so \(r_1 - r_2 \in K \). Also
\(r_1 r_2 + I = (r_1 + I)(r_2 + I) \in J \) so \(r_1 r_2 \in K \). Thus \(K \) is a subring of \(R \).

Now suppose \(J \) is an ideal in \(R/I \), \(r \in K \), and \(s \in R \). Then \(sr + I = (s + I)(r + I) \in J \)
and \(rs + I = (r + I)(s + I) \in J \). Hence \(sr \in K \) and \(rs \in K \). Thus \(K \) is an ideal in \(R \). On
the other hand, if \(K \) is an ideal in \(R \) and \(x \in J, y \in R/I \), then \(x = r + I \) for some \(r \in K \)
and \(y = s + I \) for some \(s \in R \). Then \(xy = (r + I)(s + I) = rs + I \). Since \(K \) is an ideal in
\(R \), \(rs \in K \) and so \(xy \in J \). Similarly, \(yx = (s + I)(r + I) = sr + I \). Since \(K \) is an ideal in
\(R \), \(sr \in K \) and so \(yx \in J \). Thus \(J \) is an ideal in \(R/I \).

Now define a map \(\phi : R/I \to R/K \) by \(\phi(r + I) = r + K \). It is easy to see that this
is a surjective homomorphism with kernel \(J \). Then the first isomorphism theorem shows
that \((R/I)/J \) is isomorphic to \(R/K \).

#6 Let \(M(\mathbb{Z}) \) denote the ring of 2 by 2 matrices over \(\mathbb{Z} \).

(a) Let \(W \) denote \(\{ \begin{vmatrix} a & b \\ 0 & c \end{vmatrix} \mid a, b, c \in \mathbb{Z} \} \subseteq M(\mathbb{Z}) \), Show that \(W \) is a subring of \(M(\mathbb{Z}) \).

Solution: The zero matrix is in \(W \), so \(W \) is nonempty. Let
\(\begin{vmatrix} a & b \\ 0 & c \end{vmatrix}, \begin{vmatrix} a_1 & b_1 \\ 0 & c_1 \end{vmatrix} \in W \). Then
\(\begin{vmatrix} a & b \\ 0 & c \end{vmatrix} - \begin{vmatrix} a_1 & b_1 \\ 0 & c_1 \end{vmatrix} = \begin{vmatrix} a - a_1 & b - b_1 \\ 0 & c - c_1 \end{vmatrix} \in W \)
and
\(\begin{vmatrix} a & b \\ 0 & c \end{vmatrix} \begin{vmatrix} a_1 & b_1 \\ 0 & c_1 \end{vmatrix} = \begin{vmatrix} aa_1 & ab_1 + bc_1 \\ 0 & cc_1 \end{vmatrix} \in W \).

Thus \(W \) is a subring.
(b) Let S denote the set of all symmetric matrices in $M(\mathbb{Z})$. Is S a subring? Why or why not?

Solution: $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ and $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ are symmetric matrices, but their product $\begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}$ is not symmetric.

(c) Let G denote the group of units of W. What is G?

Solution: Since $\begin{vmatrix} ab \\ 0 \\ c \end{vmatrix}$ $\begin{vmatrix} a \\ 1 \\ b \\ 0 \\ c \\ 1 \end{vmatrix} = \begin{vmatrix} aa \\ 0 \\ ab \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$ the matrix $\begin{vmatrix} a \\ b \\ 0 \\ c \end{vmatrix}$ can be a unit only if a and c are units in \mathbb{Z}, that is, only if a is 1 or -1 and c is 1 or -1. This implies that $a^2 = c^2 = 1$. Then, for such a and c and for any $b \in \mathbb{Z}$,

$\begin{vmatrix} a \\ b \\ 0 \\ c \end{vmatrix} \begin{vmatrix} a \\ -abc \\ 0 \\ c \end{vmatrix} = \begin{vmatrix} a^2 \\ 0 \\ -a^2bc + bc \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$.

Thus, if $a = \pm 1$, $c = \pm 1$, $b \in \mathbb{Z}$, $\begin{vmatrix} a \\ b \\ 0 \\ c \end{vmatrix}$ is a unit and

$\begin{vmatrix} a \\ b \\ 0 \\ c \end{vmatrix}^{-1} = \begin{vmatrix} a \\ -abc \\ 0 \\ c \end{vmatrix}$.

Therefore

$G = \{ \begin{vmatrix} a \\ b \\ 0 \\ c \end{vmatrix} | a = \pm 1, c = \pm 1, b \in \mathbb{Z} \}$.

(d) Let $N = \{ \begin{vmatrix} 1 \\ b \\ 0 \\ 1 \end{vmatrix} | b \in \mathbb{Z} \}$. Show that N is a normal subgroup of G.

Solution: First of all, N is a subgroup of G since

$\begin{vmatrix} 1 \\ b \\ 0 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ b' \\ 0 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ b + b' \end{vmatrix} \in N$

and so $\begin{vmatrix} 1 \\ b \\ 0 \\ 1 \end{vmatrix}^{-1} = \begin{vmatrix} 1 \\ -b \\ 0 \\ 1 \end{vmatrix} \in N$. Let $g \in G$ and $n = \begin{vmatrix} 1 \\ b \\ 0 \\ 1 \end{vmatrix} \in N$. Then, by the previous part, $g = \begin{vmatrix} a \\ d \\ 0 \\ c \end{vmatrix}$ where $a^2 = c^2 = 1$ and $d \in \mathbb{Z}$ and

$gng^{-1} = \begin{vmatrix} a \\ d \\ 0 \\ c \end{vmatrix} \begin{vmatrix} 1 \\ b \\ 0 \\ 1 \end{vmatrix} \begin{vmatrix} a \\ -acd \\ 0 \\ c \end{vmatrix} = \begin{vmatrix} a \\ ab + d \\ 0 \\ c \end{vmatrix} \begin{vmatrix} a \\ -adc \\ 0 \\ c \end{vmatrix} = \begin{vmatrix} a^2 \\ -a^2dc + abc + cd \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$.
Thus \(N \) is a normal subgroup of \(G \)

(e) Describe \(G/N \).

Solution: There are four cosets of \(N \) in \(G \):

\[
N = N \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
\]

\[
N \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\]

\[
N \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},
\]

and

\[
N \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

Hence \(G/N \) is isomorphic to the group of units of \(\mathbb{Z} \times \mathbb{Z} \).

#7 (a) Find all monic irreducible polynomials of degree 3 over \(\mathbb{Z}_3 \).

Solution: A polynomial of degree 3 over a field is irreducible if and only if it has no roots. The monic polynomial \(x^3 + ax^2 + bx + c \) has root 0 if and only if \(c = 0 \), has root 1 if and only if \(1 + a + b + c = 0 \), and has root 2 if and only if \(2 + a + 2b + c = 0 \). When these possibilities are eliminated, the following 8 irreducible monic polynomials of degree 3 remain:

\[
x^3 + 2x^2 + x + 1, x^3 + 2x + 1, x^3 + x^2 + 2x + 1, x^3 + 2x + 1,
\]

\[
x^3 + 2x^2 + 2x + 2, x^3 + x^2 + x + 2, x^3 + x^2 + 2, x^3 + 2x + 2.
\]

(b) Find all irreducible polynomials of degree 4 over \(\mathbb{Z}_2 \).

Solution: A polynomial of degree 4 is reducible if and only if it has a root or an irreducible factor of degree 2. Since the only irreducible polynomial of degree 2 over \(\mathbb{Z}_2 \) is \(x^2 + x + 1 \), a polynomial of degree 4 is reducible if and only if it has a root or is \((x^2 + x + 1)^2 = x^4 + x^2 + 1 \). Now the polynomial \(x^4 + ax^3 + bx^2 + cx + d \) has a root if and only if either \(d = 0 \) or \(a + b + c + d = 1 \). When these possibilities are eliminated, the following 3 irreducible monic polynomials of degree 4 remain:

\[
x^4 + x^3 + x^2 + x + 1, x^4 + x^3 + 1, x^4 + x + 1.
\]

#8 (a) Let \(I \) be a nonzero ideal in \(\mathbb{Z} \). Prove that \(\mathbb{Z}/I \) is a field if and only if it is an integral domain.

Solution: Since \(I \) is nonzero, \(I = (a) \) for some positive integer \(a \). Then \(\mathbb{Z}/I \) is an integral domain if and only if \(a \) is prime and is a field if and only if \(a \) is prime.
(b) Let F be a field and J be a nonzero ideal in $F[x]$. Prove that $F[x]/J$ is a field if and only if it is an integral domain.

Solution: Since J is nonzero, $J = (f(x))$ for some nonzero polynomial $f(x)$. Then $F[x]/J$ is an integral domain if and only if $f(x)$ is irreducible and is a field if and only if $f(x)$ is irreducible.

(c) Let R be a finite ring and L be an ideal in R. Prove that R/L is a field if and only if it is an integral domain.

Solution: Any field is an integral domain and any finite integral domain is a field.

(d) Give an example of a ring R and a nonzero ideal K in R such that R/K is an integral domain but not a field.

Solution: For example, $R = \mathbb{Z} \times \mathbb{Z}$ and $K = \{(0,n) | n \in \mathbb{Z}\}$.

#9 Let G be a group with identity e. Prove that:

(a) If $x^2 = e$ for all $x \in G$, then G is abelian.

Solution: Let $x, y \in G$. Then $xyxy = (xy)^2 = e$ and so $x(xyxy)y = xey = xy$. But $x(xyxy)y = x^2yxy^2 = eyxe = yx$.

(b) If G is abelian and finite and h is the product of all of the elements of G, then $h^2 = e$.

Solution: Suppose $G = \{g_1, ..., g_n\}$. Then $h = g_1g_2...g_n$. Now we also have $G = \{g_1^{-1}, ..., g_n^{-1}\}$ (since the map that takes each element to its inverse is a bijection). Thus $h = g_1^{-1}...g_n^{-1}$. Then $h^2 = (g_1...g_n)(g_1^{-1}...g_n^{-1})$. Since G is abelian, this product is e.

#10 Let G be a cyclic group of order 374? How many subgroups does G have?

Solution: There is one subgroup for every divisor of 374. Since $374 = 2 \times 11 \times 17$ it has 8 divisors.

#11 Find all the (right) cosets of $(2\mathbb{Z}) \times (3\mathbb{Z})$ in $\mathbb{Z} \times \mathbb{Z}$.

Solution: Any coset can be represented by a pair (a, b) where $0 \leq a < 2, 0 \leq b < 3$ and no two of these pairs are in the same coset. Thus, letting $M = (2\mathbb{Z}) \times (3\mathbb{Z})$ the cosets of M in $\mathbb{Z} \times \mathbb{Z}$ are:

$$M = M + (0, 0), M + (0, 1), M + (0, 2), M + (1, 0), M + (1, 1), M + (1, 2).$$

#12 Suppose that G is a group and H, K are normal subgroups of G with $H \cap K = \{e\}$. Prove that $hk = kh$ for any $h \in H, k \in K$.

Solution: Let $h \in H, k \in K$. Consider the element $u = (hk)(kh)^{-1} = hkh^{-1}k^{-1}$. Since K is normal, we have that $hkh^{-1} \in K$ and so

$$u = (hkh^{-1})k \in K.$$
Also, since H is normal, we have that $kh^{-1}k^{-1} \in H$ and so
\[u = h(kh^{-1}) \in H. \]
Thus $u \in H \cap K = \{e\}$ so $u = (hk)(kh)^{-1} = e$. Thus $hk = kh$.

#13 Let $C(n)$ denote the cyclic group of order n.
(a) Find all abelian groups of order 792 and write each in the form
\[C(n_1) \oplus \ldots \oplus C(n_k) \]
where n_i divides n_{i+1} for each $i, 1 \leq i \leq k - 1$.

Solution: It is easiest to do part (b) first and then rewrite each of the expressions there by using the fact that if $(m,n) = 1$ then $C(m) \oplus C(n)$ is isomorphic to $C(mn)$. This gives:
\[C(792), \]
\[C(3) \oplus C(264), \]
\[C(2) \oplus C(396), \]
\[C(6) \oplus C(132), \]
\[C(2) \oplus C(2) \oplus C(198), \]
\[C(2) \oplus C(6) \oplus C(66). \]

(b) Find all abelian groups of order 792 and write each in the form
\[C(p_1^{m_1}) \oplus \ldots \oplus C(p_l^{m_l}) \]
where p_1, \ldots, p_l are distinct primes and m_1, \ldots, m_l are positive integers.

Solution: Since $792 = 2^3 \times 3^2 \times 11$ we see that the (six) possibilities for the group are
\[C(2^3) \oplus C(3^2) \oplus C(11), \]
\[C(2^3) \oplus C(3) \oplus C(3) \oplus C(11), \]
\[C(2) \oplus C(2^2) \oplus C(3^2) \oplus C(11), \]
\[C(2) \oplus C(2^2) \oplus C(3) \oplus C(3) \oplus C(11), \]
\[C(2) \oplus C(2) \oplus C(2) \oplus C(3^2) \oplus C(11), \]
\[C(2) \oplus C(2) \oplus C(2) \oplus C(3) \oplus C(3) \oplus C(11). \]

(c) How many abelian groups of order 7! are there (up to isomorphism)? Since $7! = 2^4 \times 3^2 \times 5 \times 7$ the number of abelian groups of order 7! is the product of the number of abelian groups of order 2^4 (which is 5), the number of abelian groups of order 3^2 (which is
2), the number of abelian groups of order 5 (which is 1), and the number of abelian groups of order 7 (which is 1). Thus the number of abelian groups of order 7! is 10.

14 Show that there is no simple group of order 483.

Solution: Let G be a group of order 483. Since $483 = 3 \times 7 \times 23$, the third Sylow Theorem shows that the number of Sylow 23-subgroups is of the form $1 + k(23)$ and that this number divides $3 \times 7 \times 23$. Since $(1 + k(23), 23) = 1$ we must have that $1 + k(23)$ divides $3 \times 7 = 21$. Then $1 + k(23)$ must be less than or equal to 21. This means $k = 0$ and so the number of Sylow 23-subgroups is 1. But if H is a Sylow 23-subgroup, so is gHg^{-1} for any $g \in G$. Hence $H = gHg^{-1}$ for any $g \in G$. Thus H is a normal subgroup of G and so G is not simple.

#15 (a) Let $\sigma \in S_9$ be

$$(148)(26)(3759).$$

Express σ as a product of disjoint cycles.

Solution: $(148)(26)(3759)$

(b) Write σ in table form.

Solution:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 6 & 7 & 8 & 9 & 2 & 5 & 1 & 3
\end{bmatrix}
\]

(c) Suppose σ (from the previous part) is written as a product of k transpositions. Is k even or odd? Why?

Solution: Any k-cycle can be written as a product of $k - 1$ transpositions. The original expression for σ is a product of two 4-cycles and a 5-cycle. Thus this can be written as a product of 10 transpositions. Thus if σ can be written as a product of k transpositions, k must be even.