Math 350 - Review problems - February 25, 2008
$\# 1$ Let V and W be finite dimensional vector spaces and let $T \in \mathcal{L}(V, W)$. Prove that

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V) .
$$

\#2 Let V be a finite-dimensional vector space over F and let X and Y be subspaces of V. Recall that $X+Y$ denotes $\{x+y \mid x \in X, y \in Y\}$.
(a) Show that $X+Y$ is a subspace of V.
(b) Show that $X \cap Y$ is a subspace of V.
(c) Prove that

$$
\operatorname{dim}(X+Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)-\operatorname{dim}(X \cap Y)
$$

$\# 3$ Let $\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\left\{1,(x+1),(x+1)^{2}\right\}$. These are two ordered bases for $P_{2}(\mathbf{R})$. Let

$$
T: P_{2}(\mathbf{R}) \rightarrow P_{2}(\mathbf{R})
$$

be the linear transformation defined by

$$
T(f)=x f^{\prime}
$$

(Here $f=f(x) \in P_{2}(\mathbf{R})$ and f^{\prime} denotes the derivative of f.)
(a) Find $[T]_{\beta}$.
(b) Find $[T]_{\gamma}$.
(c) Find the change of basis matrix from β to γ.
(d) Find the change of basis matrix from γ to β.
(e) Explain how your answers to (a) - (d) are related.
(f) Find $\left[T^{t}\right]_{\beta^{*}}$.
\#4 (a) Is the set of vectors $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ in \mathbf{R}^{3} linearly independent?
Why or why not?
(b) Is the vector $\left[\begin{array}{c}1 \\ -2 \\ 2 \\ 1\end{array}\right]$ in $\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -3 \\ 1 \\ 1\end{array}\right]\right\}$? Why or why not?
(c) Does the set of vectors $\left\{\left[\begin{array}{c}-1 \\ 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]\right\}$ span \mathbf{R}^{4} ? Why or why not?
\#5 (a) Let $W_{1}=\left\{f(x) \in \mathcal{P}_{3} \mid f(1)=f(2)\right\}$. Is W_{1} a subspace of \mathcal{P}_{3} ? Why or why not?
(b) Let $W_{2}=\left\{f(x) \in \mathcal{P}_{3} \mid f(1)=2\right\}$. Is W_{2} a subspace of \mathcal{P}_{3} ? Why or why not?
$\# 6$ Let V and W be vector spaces and $v_{1}, \ldots, v_{n} \in V$. State the definition of each of the following terms:
(a) The span of $\left\{v_{1}, \ldots, v_{n}\right\}$
(b) $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent
(c) A basis of V.
(d) The dimension of V
(e) A linear transformation from V to W.
\#7 (a) Is F^{3} isomorphic to $M_{2 \times 2}(F)$? Why or why not?
(b) Is F^{3} isomorphic to $\left\{A \in M_{2 \times 2}(F) \mid A=A^{t}\right\}$? Why or why not?
(c) Is F^{2} isomorphic to $\left\{A \in M_{2 \times 2}(F) \mid A=A^{t}\right\}$? Why or why not?
(d) Is F^{2} isomorphic to $\left\{A \in M_{2 \times 2}(F) \mid A=-A^{t}\right\}$? Why or why not?
$\# 8$ Let $V=\mathbf{R}^{3}$, let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis, and let $\beta=\left\{f_{1}, f_{2}, f_{3}\right\}$ be the dual basis. Define $g \in \mathcal{L}(V, \mathbf{R})$ by

$$
g\left(\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]\right)=r+2 s-3 t .
$$

Express g as a linear combination of elements of β.
\#9 Let

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
3 & -1 & 2 & 2 \\
1 & 0 & 0 & 1 \\
-1 & 2 & 2 & 4
\end{array}\right], \\
& B=\left[\begin{array}{cccc}
4 & -1 & 2 & 3 \\
1 & 0 & 0 & 1 \\
-1 & 2 & 2 & 4
\end{array}\right],
\end{aligned}
$$

and

$$
C=\left[\begin{array}{cccc}
3 & 5 & 2 & 2 \\
1 & 2 & 0 & 1 \\
-1 & 0 & 2 & 4
\end{array}\right]
$$

Find elementary matrices P and Q such that $P A=B$ and $A Q=C$.
$\# 10$ Suppose V_{1}, \ldots, V_{6} are vector spaces with

$$
V_{1} \subseteq V_{2} \subseteq V_{3} \subseteq V_{4} \subseteq V_{5} \subseteq V_{6}
$$

and $\operatorname{dim}\left(V_{6}\right)=4$. Prove that $V_{i}=V_{i+1}$ for some $i, 1 \leq i \leq 5$.
$\# 11$ Let $P=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1\end{array}\right]$. Find P^{-1}. Show your work.

