MATH 350-01 - Review problems for Exam \#2

This is the complete set of review problems. Problems \#4, \#7c,d, and \#10-\#16 have been added since the original set was posted on $4 / 7$. In addition, some typos have been corrected.

These problems will be worked at a review session on Sunday, 4/13, from 2:00-5:00 PM. The location of the review session will be posted on the door of Hill-340. (It will probably be a 4th floor classroom in Hill Center.)
\#1 Suppose that A is a 5 by 5 matrix and

$$
B=A+\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & -1 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

If $\operatorname{det}(A)=1$ and $\operatorname{det}(B)=3$, what is $\operatorname{det}(2 A+B)$. Why?
\#2 Let the 4 by 7 matrix A have columns a_{1}, \ldots, a_{7}. Suppose the reduece row echelon form of A is

$$
\left[\begin{array}{ccccccc}
1 & 2 & 0 & 0 & -1 & 0 & 3 \\
0 & 0 & 1 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Suppose further that $a_{2}=\left[\begin{array}{c}2 \\ -4 \\ 0 \\ 6\end{array}\right], a_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]$, and $a_{5}=\left[\begin{array}{c}-1 \\ 2 \\ 1 \\ -3\end{array}\right]$. Find A.
\#3 A 9 by 9 diagonalizable matrix B has three eigenvalues: 1,2 and 3 .

$$
\operatorname{rank}(A-I)=7
$$

and

$$
\operatorname{rank}(A-2 I)=5,
$$

what is the multiplicity of the eigenvalue 3 ? Why?
\#4 Let A be an m by n matrix. Write $A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$ where A_{i} denotes the i-th column of A. Let $A_{k}=\left[\begin{array}{lll}a_{1} & \ldots & a_{k}\end{array}\right]$, i.e., the matrix consisting of the first k columns of A. Set $s_{i}(A)=\operatorname{rank}\left(A_{i}\right)$ for $1 \leq i \leq n$, and let $s(A)$ denote the n-tuple $\left[s_{1}(A) \quad, \ldots, \quad s_{n}(A)\right]$.
(a) Let P be an invertible m by m matrix. Prove that $s(A)=s(P A)$.
(b) Let R be the reduced row echelon form of A. Prove that $s(R)=s(A)$.
(c) Say that a column of A is a basic column if the corresponding column of R contains the initial nonzero entry of some row. Show how to determine the basic columns from the n-tuple $s(A)$.
(d) Show that the column a_{i} of A is a linear combination of the columns a_{j} such that $j \leq i$ and a_{j} is basic.
(e) Explain why a matrix A has only one reduced row echelon form.
\#5 Let

$$
A=\left[\begin{array}{ccccc}
1 & 3 & -1 & -1 & -1 \\
1 & 2 & 0 & 1 & -1 \\
2 & 5 & -1 & 0 & -2 \\
2 & 3 & 1 & 4 & -1
\end{array}\right]
$$

(a) Find the reduced row echelon form for A
(b) Find a basis for the null space $N\left(L_{A}\right)$
(c) Find a basis for the row space of A
(d) Find a basis for the column space of A.
$\# 6$ Let $A=\left[\begin{array}{ccc}-3 & 0 & -5 \\ 0 & 2 & 0 \\ 1 & 0 & 3\end{array}\right]$.
(a) Find all eigenvalues for A and find a basis for each eigenspace.
(b) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
\#7
(a) Compute $\operatorname{det} A$ if

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & -2 \\
1 & 4 & 1 & 4 \\
1 & 1 & 1 & 1 \\
1 & 4 & -1 & -4
\end{array}\right]
$$

(b) Compute $\operatorname{det} B$ if

$$
B=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 \\
0 & 3 & 7 & 3 & 0 \\
0 & 0 & 4 & 13 & 4 \\
0 & 0 & 0 & 5 & 5
\end{array}\right]
$$

(c) Let $a_{1}, \ldots, a_{n} \in F$. Compute

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{1}^{(n-1)} & a_{2}^{(n-1)} & \ldots & a_{n}^{(n-1)} \\
a_{1}^{(n-2)} & a_{2}^{(n-2)} & \ldots & a_{n}^{(n-2)} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
a_{1} & a_{2} & \ldots & a_{n} \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

(d) Let $a_{0}, \ldots, a_{n-1} \in F$. Find the characteristic polynomial of

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & a_{0} \\
1 & 0 & 0 & \ldots & 0 & a_{1} \\
0 & 1 & 0 & \ldots & 0 & a_{2} \\
0 & 0 & 1 & \ldots & 0 & a_{3} \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
0 & 0 & 0 & \ldots & 1 & a_{n-1}
\end{array}\right] .
$$

\#8 Let A be an m by n matrix over \mathbf{R} and let R be the reduced row echelon form of A. Suppose that the columns of A are a_{1}, \ldots, a_{n} and that the columns of R are r_{1}, \ldots, r_{n}. Let $k_{1}, \ldots, k_{n} \in \mathbf{R}$. Prove that

$$
k_{1} a_{1}+\ldots+k_{n} a_{n}=0
$$

if and only if

$$
k_{1} r_{1}+\ldots+k_{n} r_{n}=0
$$

$\# 9$ Let T be the linear operator on $P_{3}(\mathbf{R}$ defined by

$$
T(f)=3 f-x f^{\prime}+f^{\prime \prime}
$$

(Here $f=f(x) \in P_{2}(\mathbf{R}), f^{\prime}$ denotes the derivative of f, and $f^{\prime \prime}$ denotes the second derivative of f.) Let W be the T-cyclic subspace of $P_{3}(\mathbf{R})$ generated by x^{3}.
(a) Find a basis for W.
(b) Find the characteristic polynomial of T_{W}, the restriction of T to W.
\#10 State the definitions of the following terms.
(a) An eigenvalue (respectively eigenvector, eigenspace) of a linear transformation from V to V.
(b) An eigenvalue (respectively eigenvector, eigenspace) of an n by n matrix A.
(c) The direct sum of subspaces V_{1}, \ldots, V_{k} of a vector space V.
(d) The determinant of an n by n matrix A.
(e) The characteristic polynomial of an n by n matrix A.
(f) Similar
\#11 Prove that similar matrices have the same characteristic polynomials and (hence) the same eigenvalues. Give an example to show that they do not necessarily have the same eigenvectors.
$\# 12$ Let A be an m by n matrix and B be an n by p matrix.
(a) Is the row space of $A B$ contained in the row space of A ? Why or why not?
(b) Is the row space of $A B$ contained in the row space of B ? Why or why not?
(c) Is the column space of $A B$ contained in the column space of A ? Why or why not?
(d) Is the column space of $A B$ contained in the column space of B ? Why or why not?
(e) Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$ and $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
\#13 Suppose A is a 5 by 7 matrix and B is a 7 by 5 matrix. Suppose further that $\operatorname{det}(A B)=3$. What is $\operatorname{det}(B A)$? Why?
\#14 Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

(a) Find all eigenvalues for A and for each eigenvalue find a basis for the corresponding eigenspace.
(b)Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. (This is equivalent to $P^{-1} A P=D$.)
(c) Using your answer to (b), find the general solution of the following system of linear differential equations:

$$
\begin{gathered}
y_{1}^{\prime}=y_{1}+y_{2}-y_{3} \\
y_{2}^{\prime}=2 y_{2}+y_{3} \\
y_{3}^{\prime}=3 y_{3}
\end{gathered}
$$

\#15 A 3 by 3 matrix A has eigenvalues 1,2 , and 3 . What are the eigenvalues of the matrix $B=A^{2}-I$? Why?
\#16 In each part state whether or not the given matrix is diagonalizable and give your reason.
(a) $R=\left[\begin{array}{lll}3 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$
(b) $P=\left[\begin{array}{lll}3 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$
(c) $Q=\left[\begin{array}{lll}3 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$

