MATH 350-01 - Solutions to review problems for Exam \#2

The solution to $\# 2$ has been corrected and some minor typos have been fixed as of 6 PM on Sunday, 4/13.
\#1 Suppose that A is a 5 by 5 matrix and

$$
B=A+\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & -1 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

If $\operatorname{det}(A)=1$ and $\operatorname{det}(B)=3$, what is $\operatorname{det}(2 A+B)$. Why?
Solution: Let a_{i} denote the i-th row of A and b_{i} denote the i-th row of B. Thus $b_{1}=$ $a_{1}, b_{2}=a_{2}+[1,-1,2,0,1], b_{3}=a_{3}, b_{4}=a_{4}, b_{5}=a_{5}$, and we may write

$$
A=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right], B=\left[\begin{array}{l}
a_{1} \\
b_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right] .
$$

Let $C=\left(\frac{2}{3}\right) A+\left(\frac{1}{3}\right) B$. Thus

$$
C=\left[\begin{array}{c}
a_{1} \\
\left(\frac{2}{3}\right) a_{2}+\left(\frac{1}{3}\right) b_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

Then

$$
\operatorname{det} C=\left(\frac{2}{3}\right) \operatorname{det}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]+\left(\frac{1}{3}\right)\left[\begin{array}{l}
a_{1} \\
b_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=\left(\frac{2}{3}\right) \operatorname{det}(A)+\left(\frac{1}{3}\right) \operatorname{det}(B)=\left(\frac{2}{3}\right)+\left(\frac{1}{3}\right) 3=\frac{5}{3} .
$$

Now $2 A+B=3 C=(3 I) C$ and so

$$
\operatorname{det}(2 A+B)=\operatorname{det}(3 I) \operatorname{det}(C)=3^{5}\left(\frac{5}{3}\right)=3^{4}(5)=405
$$

\#2 Let the 4 by 7 matrix A have columns a_{1}, \ldots, a_{7}. Suppose the reduced row echelon form of A is

$$
\left[\begin{array}{ccccccc}
1 & 2 & 0 & 0 & -1 & 0 & 3 \\
0 & 0 & 1 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Suppose further that $a_{2}=\left[\begin{array}{c}2 \\ -4 \\ 0 \\ 6\end{array}\right], a_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]$, and $a_{5}=\left[\begin{array}{c}-1 \\ 2 \\ 1 \\ -3\end{array}\right]$. Find A.
Solution: Let R denote the reduced row echelon form of A and let r_{i} denote the i-th column of R. Then we know that if $b_{1}, \ldots, b_{7} \in F$ we have $b_{1} a_{1}+\ldots+b_{7} a_{7}=0$ if and only if $b_{1} r_{1}+\ldots+b_{7} r_{7}=0$. Now $r_{2}=2 r_{1}, r_{5}=-r_{1}+2 r_{3}+r_{4}, r_{6}=r_{4}$, and $r_{7}=3 r_{1}+r_{3}+3 r_{4}$. Hence $a_{2}=2 a_{1}$ and so

$$
a_{1}=\left(\frac{1}{2}\right) a_{2}=\left[\begin{array}{c}
1 \\
-2 \\
0 \\
3
\end{array}\right] .
$$

Also $a_{5}=-a_{1}+2 a_{3}+a_{4}$ and so

$$
a_{4}=a_{1}-2 a_{3}+a_{5}=\left[\begin{array}{c}
1 \\
-2 \\
0 \\
3
\end{array}\right] 12\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2 \\
1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
-4
\end{array}\right] .
$$

Finally,

$$
a_{6}=a_{4}=\left[\begin{array}{l}
-2 \\
-2 \\
-1 \\
-4
\end{array}\right],
$$

and

$$
a_{7}=3 a_{1}+a_{3}+3 a_{4}=3\left[\begin{array}{c}
1 \\
-2 \\
0 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right]+3\left[\begin{array}{l}
-2 \\
-2 \\
-1 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-11 \\
-2 \\
-1
\end{array}\right] .
$$

Thus

$$
A=\left[\begin{array}{ccccccc}
1 & 2 & 1 & -2 & -1 & -2 & -2 \\
-2 & -4 & 1 & -2 & 2 & -2 & -11 \\
0 & 0 & 1 & -1 & 1 & -1 & -2 \\
3 & 6 & 2 & -4 & -3 & -4 & -1
\end{array}\right]
$$

\#3 A 9 by 9 diagonalizable matrix A has three eigenvalues: 1,2 and 3 . If

$$
\operatorname{rank}(A-I)=7
$$

and

$$
\operatorname{rank}(A-2 I)=5,
$$

what is the multiplicity of the eigenvalue 3 ? Why?

Solution: Since the matrix is diagonalizable, the sum of the dimensions of the eigenspaces must equal 9 . Now the 1 -eigenspace, E_{1}, is equal to $N(A-I)$ and so its dimension is the nullity of $A-I$ which is equal to $9-\operatorname{rank}(A-I)=9-7=2$. Similarly, the dimension of E_{2} is $9-\operatorname{rank}(A-2 I)=9-5=4$. Then $2+4+\operatorname{dim}\left(E_{3}\right)=9$ and so $\operatorname{dim}\left(E_{3}\right)=3$. This is the (geometric) multiplicity of the eigenvalue 3 .
\#4 Let A be an m by n matrix. Write $A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$ where A_{i} denotes the i-th column of A. Let $A_{k}=\left[\begin{array}{lll}a_{1} & \ldots & a_{k}\end{array}\right]$, i.e., the matrix consisting of the first k columns of A. Set $s_{i}(A)=\operatorname{rank}\left(A_{i}\right)$ for $1 \leq i \leq n$, and let $s(A)$ denote the n-tuple $\left[s_{1}(A) \quad, \ldots, s_{n}(A)\right]$.
(a) Let P be an invertible m by m matrix. Prove that $s(A)=s(P A)$.
(b) Let R be the reduced row echelon form of A. Prove that $s(R)=s(A)$.
(c) Say that a column of A is a basic column if the corresponding column of R contains the initial nonzero entry of some row. Show how to determine the basic columns from the n-tuple $s(A)$.
(d) Show that the column a_{i} of A is a linear combination of the columns a_{j} such that $j \leq i$ and a_{j} is basic.
(e) Explain why a matrix A has only one reduced row echelon form.

Solution:

(a) We know from the definition of matrix multiplication that the i-th column of $P A$ is $P a_{i}$. Therefore $(P A)_{k}=P\left(A_{k}\right)$ and so, $s_{k}(P A)=\operatorname{rank}\left((P A)_{k}\right)=\operatorname{rank}\left(P\left(A_{k}\right)\right)=$ $\operatorname{rank}\left(A_{k}\right)=A_{k}$.
(b) Since $R=P A$ for some invertible matrix P, this follows from part (a).
(c) The k-th column of R is basic if and only if it is not contained in the span of the first $k-1$ columns. This occurs if and only if either $k=1$ and $s_{1}(R) \neq 0$ or if $k>1$ and $s_{k}(R)>s_{k-1}(R)$. In view of part (b), this means that the k-th column is basic if and only if either $k=1$ and $s_{1}(A) \neq 0$ or if $k>1$ and $S_{k}(A)>s_{k-1}(A)$.
(d) We know that for scalars b_{1}, \ldots, b_{n} we have $b_{1} a_{1}+\ldots+b_{n} a_{n}=0$ if and only if $b_{1} r_{1}+\ldots+b_{n} r_{n}$. Since r_{i} is a linear combination of the columns r_{j} such that $j \leq i$ and r_{j} is basic, the same result holds for the a_{i}.
(e) Suppose A has reduced row echelon forms

$$
R=\left[\begin{array}{llll}
r_{1} & r_{2} & \ldots & r_{n}
\end{array}\right]
$$

and

$$
T=\left[\begin{array}{llll}
t_{1} & t_{2} & \ldots & t_{n}
\end{array}\right] .
$$

Then by (c) the basic columns of R are the same as the basic columns of T. Furthermore, any column of A is a linear combination of basic columns of A. Therefore the corresponding column of R is the same linear combination of the basic columns of R and the corresponding column of T is the same linear combination of the basic columns of T. Thus every column of R is equal to the corresponding column of T and so the two matrices are equal.
\#5 Let

$$
A=\left[\begin{array}{ccccc}
1 & 3 & -1 & -1 & -1 \\
1 & 2 & 0 & 1 & -1 \\
2 & 5 & -1 & 0 & -2 \\
2 & 3 & 1 & 4 & -1
\end{array}\right]
$$

(a) Find the reduced row echelon form for A
(b) Find a basis for the null space $N\left(L_{A}\right)$
(c) Find a basis for the row space of A
(d) Find a basis for the column space of A.

Solution:

(a) $R=\left[\begin{array}{ccccc}1 & 0 & 2 & 5 & 0 \\ 0 & 1 & -1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ is the reduced row echelon form.
(b) The free variables are x_{3} and x_{4}. Suppose $R\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=0$. Then

$$
\left[\begin{array}{c}
x_{1}+2 x_{3}+5 x_{4} \\
x_{2}-x_{3}-2 x_{4}, x_{5} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

and so

$$
\begin{gathered}
x_{1}=-2 x_{3}-5 x_{4} \\
x_{2}=x_{3}+2 x_{4} \\
x_{3}=x_{3}
\end{gathered}
$$

$$
\begin{aligned}
x_{4} & =x_{4} \\
x_{5} & =0 .
\end{aligned}
$$

Then

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3}-5 x_{4} \\
x_{3}+2 x_{4} \\
x_{3} \\
x_{4} \\
0
\end{array}\right]=x_{3}\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-5 \\
2 \\
0 \\
1 \\
0
\end{array}\right] .
$$

Thus

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
2 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

is a basis for $N\left(L_{A}\right)$.
(c) The set of nonzero rows of the reduced row echelon form of A is (one) basis for the row space of A. Thus $\left\{\left[\begin{array}{lllll}1 & 0 & 2 & 5 & 0\end{array}\right],\left[\begin{array}{lllll}0 & 1 & -1 & -2 & 0\end{array}\right],\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]\right\}$ is a basis for the row space of A.
(d) The set of basic columns of A (that is, those columns corresponding to the columns of R containing the initial nonzero element of some row) is one basis for the column space of A. Thus $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 5 \\ 3\end{array}\right],\left[\begin{array}{l}-1 \\ -1 \\ -2 \\ -1\end{array}\right]\right\}$ is a basis for the column space of A. $\# 6$ Let $A=\left[\begin{array}{ccc}-3 & 0 & -5 \\ 0 & 2 & 0 \\ 1 & 0 & 3\end{array}\right]$.
(a) Find all eigenvalues for A and find a basis for each eigenspace.
(b) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.

Solution:

(a) $\operatorname{det}\left[\begin{array}{ccc}-3-\lambda & 0 & -5 \\ 0 & 2-\lambda & 0 \\ 1 & 0 & 3-\lambda\end{array}\right]=$
$(2-\lambda) \operatorname{det}\left[\begin{array}{cc}-3-\lambda & -5 \\ 1 & 3-\lambda\end{array}\right]=(2-\lambda)\left(\lambda^{2}-9+5\right)=(2-\lambda)\left(\left(\lambda^{2}-4\right)=-(\lambda-2)^{2}(\lambda+2)\right.$.

Thus the eigenvalues are 2 and -2 . Now $E_{2}=N(A-2 I)=N\left(\left[\begin{array}{ccc}-5 & 0 & -5 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]\right)$.
Thus $\left\{\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis for E_{2}. Also $E_{-2}=N(A-(-2) I)=N(A+2 I)=$ $N\left(\left[\begin{array}{ccc}-1 & 0 & -5 \\ 0 & 4 & 0 \\ 1 & 0 & 5\end{array}\right]\right.$. Thus $\left\{\left[\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right]\right.$ is a basis for E_{-2}.
(b) $P=\left[\begin{array}{ccc}-1 & 0 & -5 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], D=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2\end{array}\right]$ is one choice for O and D.
\#7
(a) Compute $\operatorname{det} A$ if

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & -2 \\
1 & 4 & 1 & 4 \\
1 & 1 & 1 & 1 \\
1 & 4 & -1 & -4
\end{array}\right]
$$

(b) Compute $\operatorname{det} B$ if

$$
B=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 \\
0 & 3 & 7 & 3 & 0 \\
0 & 0 & 4 & 13 & 4 \\
0 & 0 & 0 & 5 & 5
\end{array}\right]
$$

(c) Let $a_{1}, \ldots, a_{n} \in F$. Compute

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{1}^{(n-1)} & a_{2}^{(n-1)} & \ldots & a_{n}^{(n-1)} \\
a_{1}^{(n-2)} & a_{2}^{(n-2)} & \ldots & a_{n}^{(n-2)} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
a_{1} & a_{2} & \ldots & a_{n} \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

(d) Let $a_{0}, \ldots, a_{n-1} \in F$. Find the characteristic polynomial of

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & a_{0} \\
1 & 0 & 0 & \ldots & 0 & a_{1} \\
0 & 1 & 0 & \ldots & 0 & a_{2} \\
0 & 0 & 1 & \ldots & 0 & a_{3} \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
0 & 0 & 0 & \ldots & 1 & a_{n-1}
\end{array}\right] .
$$

Solution:

(a) $\operatorname{det} A=\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -1 & -2 \\ 0 & 2 & 2 & 6 \\ 0 & -1 & 2 & 3 \\ 0 & 2 & 0 & -2\end{array}\right]=$
$-\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & 2 & 2 & 6 \\ 0 & 2 & 0 & -2\end{array}\right]=-\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 6 & 12 \\ 0 & 0 & 4 & 4\end{array}\right]=-\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 6 & 12 \\ 0 & 0 & 0 & -4\end{array}\right]=-24$.
(b) $\operatorname{det} B=\operatorname{det}\left[\begin{array}{ccccc}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 3 & 7 & 3 & 0 \\ 0 & 0 & 4 & 13 & 4 \\ 0 & 0 & 0 & 5 & 5\end{array}\right]=$

$$
\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 4 & 13 & 4 \\
0 & 0 & 0 & 5 & 5
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 5 & 5
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & -15
\end{array}\right]=-15 .
$$

(c) Subtract a_{1} times the second row from the first row. Then subtract a_{1} times the third row from the second row. Continue in this way, finally subtracting a_{1} times the n-th row from the $n-1$ st row to get

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{1}^{(n-1)} & a_{2}^{(n-1)} & \ldots & a_{n}^{(n-1)} \\
a_{1}^{(n-2)} & a_{2}^{(n-2)} & \ldots & a_{n}^{(n-2)} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
a_{1} & a_{2} & \ldots & a_{n} \\
1 & 1 & \ldots & 1
\end{array}\right]=
$$

$$
\operatorname{det}\left[\begin{array}{cccc}
0 & \left(a_{2}-a_{1}\right) a_{2}^{(n-2)} & \ldots & \left(a_{n}-a_{1}\right) a_{n}^{(n-2)} \\
0 & \left(a_{2}-a_{1}\right) a_{2}^{(n-3)} & \ldots & \left(a_{n}-a_{1}\right) a_{n}^{(n-3)} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
0 & a_{2}-a_{1} & \ldots & a_{n}-a_{1} \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

Expanding along the first column shows that this is

$$
\left[\begin{array}{ccc}
\left(a_{2}-a_{1}\right) a_{2}^{(n-2)} & \ldots & \left(a_{n}-a_{1}\right) a_{n}^{(n-2)} \\
\left(a_{2}-a_{1}\right) a_{2}^{(n-3)} & \ldots & \left(a_{n}-a_{1}\right) a_{n}^{(n-3)} \\
\cdot & \ldots & \cdot \\
\cdot & \ldots & \cdot \\
a_{2}-a_{1} & \ldots & a_{n}-a_{1}
\end{array}\right]
$$

Factoring out the common factors from each column gives

$$
\begin{gathered}
(-1)^{n+1}\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right) \ldots\left(a_{n}-a_{1}\right) \operatorname{det}\left[\begin{array}{cccc}
a_{2}^{(n-2)} & a_{3}^{(n-2)} & \ldots & a_{n}^{(n-2)} \\
a_{2}^{(n-3)} & a_{3}^{(n-3)} & \ldots & a_{n}^{(n-3)} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
a_{2} & a_{3} & \ldots & a_{n} \\
1 & 1 & \ldots & 1
\end{array}\right]= \\
\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \ldots\left(a_{1}-a_{n}\right) \operatorname{det}\left[\begin{array}{cccc}
a_{2}^{(n-2)} & a_{3}^{(n-2)} & \ldots & a_{n}^{(n-2)} \\
a_{2}^{(n-3)} & a_{3}^{(n-3)} & \ldots & a_{n}^{(n-3)} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
a_{2} & a_{3} & \ldots & a_{n} \\
1 & 1 & \ldots & 1
\end{array}\right] .
\end{gathered}
$$

Continuing in this way gives
$\operatorname{det}\left[\begin{array}{cccc}a_{1}^{(n-1)} & a_{2}^{(n-1)} & \ldots & a_{n}^{(n-1)} \\ a_{1}^{(n-2)} & a_{2}^{(n-2)} & \ldots & a_{n}^{(n-2)} \\ \cdot & \cdot & \ldots & \cdot \\ \cdot & \cdot & \ldots & \cdot \\ \cdot & \cdot & \ldots & \cdot \\ a_{1} & a_{2} & \ldots & a_{n} \\ 1 & 1 & \ldots & 1\end{array}\right]=\left(a_{1}-a_{2}\right) \ldots\left(a_{1}-a_{n}\right)\left(a_{2}-a_{3}\right) \ldots\left(a_{2}-a_{n}\right) \ldots\left(a_{n-1}-a_{n}\right)$.
(d) Expanding along the first row gives

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cccccc}
-\lambda & 0 & 0 & \ldots & 0 & a_{0} \\
1 & -\lambda & 0 & \ldots & 0 & a_{1} \\
0 & 1 & -\lambda & \ldots & 0 & a_{2} \\
0 & 0 & 1 & \ldots & 0 & a_{3} \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
0 & 0 & 0 & \ldots & 1 & a_{n-1}-\lambda
\end{array}\right]= \\
& \left(-\lambda \operatorname{det}\left[\begin{array}{cccccc}
-\lambda & 0 & 0 & \ldots & 0 & a_{1} \\
1 & -\lambda & 0 & \ldots & 0 & a_{2} \\
0 & 1 & -\lambda & \ldots & 0 & a_{3} \\
0 & 0 & 1 & \ldots & 0 & a_{4} \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
0 & 0 & 0 & \ldots & 1 & a_{n-1}-\lambda
\end{array}\right]+(-1)^{1+n} \operatorname{det}\left[\begin{array}{ccccc}
1 & -\lambda & 0 & \ldots & 0 \\
0 & 1 & -\lambda & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
. & . & . & \ldots & . \\
. & . & . & \ldots & . \\
. & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & 1
\end{array}\right] .\right.
\end{aligned}
$$

Since the matrix in the second summand is upper triangular with diagonal entries 1 , its determinant is 1 . Thus the characteristic polynomial of the given matrix is

$$
\left(-\lambda \operatorname{det}\left[\begin{array}{cccccc}
-\lambda & 0 & 0 & \ldots & 0 & a_{1} \\
1 & -\lambda & 0 & \ldots & 0 & a_{2} \\
0 & 1 & -\lambda & \ldots & 0 & a_{3} \\
0 & 0 & 1 & \ldots & 0 & a_{4} \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
0 & 0 & 0 & \ldots & 1 & a_{n-1}-\lambda
\end{array}\right]+(-1)^{1-n} a_{0} .\right.
$$

Continuing in this way shows that the characteristic polyomial is

$$
(-1)^{n}\left(\lambda^{n}-a_{n-1} \lambda^{n-1}-\ldots-a_{1} \lambda-a_{0}\right) .
$$

\#8 Let A be an m by n matrix over \mathbf{R} and let R be the reduced row echelon form of A. Suppose that the columns of A are a_{1}, \ldots, a_{n} and that the columns of R are r_{1}, \ldots, r_{n}. Let $k_{1}, \ldots, k_{n} \in \mathbf{R}$. Prove that

$$
k_{1} a_{1}+\ldots+k_{n} a_{n}=0
$$

if and only if

$$
k_{1} r_{1}+\ldots+k_{n} r_{n}=0
$$

Solution: Write $k=\left[\begin{array}{c}k_{1} \\ k_{2} \\ \cdot \\ \cdot \\ \cdot \\ k_{n}\end{array}\right]$. Then $k_{1} a_{1}+\ldots+k_{n} a_{n}=A k$ and $k_{1} r_{1}+\ldots+k_{n} r_{n}=R k$.
But $R=P A$ for some invertible n by m matrix P. Now if $A k=0$ then $R k=(P A) k=$ $P(A k)=0$ and if $R k=0$ then $A k=\left(P^{-1} R\right) k=P^{-1}(R k)=0$.
\#9 Let T be the linear operator on $P_{3}(\mathbf{R})$ defined by

$$
T(f)=3 f-x f^{\prime}+f^{\prime \prime}
$$

(Here $f=f(x) \in P_{3}(\mathbf{R}), f^{\prime}$ denotes the derivative of f, and $f^{\prime \prime}$ denotes the second derivative of f.) Let W be the T-cyclic subspace of $P_{3}(\mathbf{R})$ generated by x^{3}.
(a) Find a basis for W.
(b) Find the characteristic polynomial of T_{W}, the restriction of T to W.

Solution:

(a) $T\left(x^{3}\right)=3 x^{3}-x\left(3 x^{2}\right)+6 x=6 x$ and so $T^{2}\left(x^{3}\right)=T(6 x)=18 x-x(6)+0=12 x$. Thus $T^{2}\left(x^{3}\right) \in \operatorname{span}\left\{x^{3}, T\left(x^{3}\right)\right\}$. Since $\left\{x^{3}, T\left(x^{3}\right)\right\}=\left\{x^{3}, 6 x\right\}$ is linearly independent it is a basis for W.
(b) $T^{2}\left(x^{3}\right)=2 T\left(x^{3}\right)$ and therefore $t^{2}-2 t$ is the characteristic polynomial of T_{W}.
\#10 State the definitions of the following terms.
(a) An eigenvalue (respectively eigenvector, eigenspace) of a linear transformation from V to V.
(b) An eigenvalue (respectively eigenvector, eigenspace) of an n by n matrix A.
(c) The direct sum of subspaces V_{1}, \ldots, V_{k} of a vector space V.
(d) The determinant of an n by n matrix A.
(e) The characteristic polynomial of an n by n matrix A.
(f) Similar

Solution:

(a) A scalar $\alpha \in F$ such that $T(v)=\alpha v$ for some nonzero $v \in V$ is called an eigenvalue for T and such a v is called an eigenvector belonging to α. The α-eigenspace, denoted E_{α} is $\{v \in V \mid T(v)=\alpha v\}$.
(b) A scalar $\alpha \in F$ such that $A v=\alpha v$ for some nonzero column vecgtor $v \in F^{n}$ is called an eigenvalue for A and such a v is called an eigenvector belonging to α. The α-eigenspace, denoted E_{α} is $\left\{v \in F^{n} \mid A v=\alpha v\right\}$.
(c) The sum, $V_{1}+\ldots+V_{k}$ of the subspaces V_{1}, \ldots, V_{k} is

$$
\left\{v_{1}+\ldots+v_{k} \mid v_{1} \in V_{1}, \ldots, v_{k} \in V_{k}\right\}
$$

The sum $V_{1}+\ldots+V_{k}$ is said to be a direct sum (and written $\left.V_{1} \oplus \ldots \oplus V_{k}\right)$ if $V_{i} \cap\left(V_{1}+\right.$ $\left.\ldots+v_{i-1}+V_{i+1}+\ldots+V_{k}\right)=\{0\}$ for all $i, 1 \leq i \leq k$.
(d) The determinant of the 1 by 1 matrix $[a]$ is a. Assume that determinants of $n-1$ by $n-1$ matrices have been defined and that $A=\left[a_{i j}\right]$ is an n by n matrix. Then

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} \overline{A^{1} j}
$$

where $\overline{A^{1} j}$ is the matrix obtained from A by deleting the first row and the j-th column.
(e) The characteristic polynomial of the n by n matrix A is $\operatorname{det}(A-\lambda I)$ where I denotes the n by n identity matrix.
(f) Two n by n matrices A and B are similar if there is an invertible n by n matrix P such that $B=P A P^{-1}$.
\#11 Prove that similar matrices have the same characteristic polynomials and (hence) the same eigenvalues. Give an example to show that they do not necessarily have the same eigenvectors.

Solution:

Suppose $B=P A P^{-1}$ where P is invertible. Then

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\operatorname{det}\left(P A P^{-1}-\lambda I\right)=\operatorname{det}\left(P(A-\lambda I) P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(A-\lambda I) \operatorname{det}\left(P^{-1}\right)= \\
\operatorname{det}(P) \operatorname{det}(A-\lambda I) \operatorname{det}(P)^{-1}=\operatorname{det}(P) \operatorname{det}(P)^{-1} \operatorname{det}(A-\lambda I)=\operatorname{det}(A-\lambda I)
\end{gathered}
$$

Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Then A and B are similar since $B=P A P^{-1}$ where $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. However, the 0-eigenspace of A is $N\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)=F\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and the 0-eigenspace of B is $N\left(\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right)=F\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
$\# 12$ Let A be an m by n matrix and B be an n by p matrix.
(a) Is the row space of $A B$ contained in the row space of A ? Why or why not?
(b) Is the row space of $A B$ contained in the row space of B ? Why or why not?
(c) Is the column space of $A B$ contained in the column space of A ? Why or why not?
(d) Is the column space of $A B$ contained in the column space of B ? Why or why not?
(e) Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$ and $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.

Solution:

(a) No. In fact, the row space of A consists of (row) vectors in F^{n} and the row space of $A B$ consists of vectors in F^{p}, so if $n \neq p$ an inclusion is impossible. Even if $n=p$ the inclusion does not hold. For example, if $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ then the row space of $A B$ is $F\left[\begin{array}{ll}0 & 1\end{array}\right]$ while the row space of A is $F\left[\begin{array}{ll}1 & 0\end{array}\right]$.
(b) Yes. Let $E_{i j}$ denote the matrix with entry 1 in the (i, j) position and 0 in every other position. Then the i th row of $E_{i j} B$ is equal to the j th row of B and all other rows of $E_{i j} B$ are 0 . Thus the row space of $E_{i j} B$ is contained in the row space of B. Since A is a linear combination of the $E_{i j}$ it follows tht the row space of $A B$ is contained in the row space of B.
(c) The column space of $A B$ is the row space of $(A B)^{t}=B^{t} A^{t}$. Now the row space of $B^{t} A^{t}$ is contained in the ros space of A^{t} which is the column space of A. Thus the column space of $A B$ is contained in the column space of A.
(d) The example of (a) shows that the answer is no.
(e) We know that the rank of A is equal to the dimension of the row space. Thus (b) gives $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$. We also know that the rank of A is equal to the dimension of the column space. Thus (c) gives $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
\#13 Suppose A is a 5 by 7 matrix and B is a 7 by 5 matrix. Suppose further that $\operatorname{det}(A B)=3$. What is $\operatorname{det}(B A)$? Why?

Solution: We have $\operatorname{rank} A \leq 5$ (since A has only 5 rows). Thus by (e) of the previous problem, $\operatorname{rank}(B A) \leq 5$. But $B A$ is a 7 by matrix. Hence $B A$ is not invertible and so its determinant is equal to 0 .
\#14 Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

(a) Find all eigenvalues for A and for each eigenvalue find a basis for the corresponding eigenspace.
(b)Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. (This is equivalent to $P^{-1} A P=D$.)
(c) Using your answer to (b), find the general solution of the following system of linear differential equations:

$$
y_{1}^{\prime}=y_{1}+y_{2}-y_{3}
$$

$$
\begin{gathered}
y_{2}^{\prime}=2 y_{2}+y_{3} \\
y_{3}^{\prime}=3 y_{3}
\end{gathered}
$$

Solution: (a) The eigenvalues are $1,2,3$. The 1-eigenspace has basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$; the 2 eigenspace has basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$; the 3-eigenspace has basis $\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.
(b) We may take $P=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(c) Let $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ be the general solution to the system and let $x=P^{-1} y$. Then $A y=y^{\prime}$ and $D x=P^{-1} A P x=P^{-1} A P P^{-1} y=P^{-1} A y=P^{-1} y^{\prime}=\left(P^{-1} y\right)^{\prime}=x^{\prime}$. Thus

$$
x=\left[\begin{array}{c}
C_{1} e^{t} \\
C_{2} e^{2 t} \\
C_{3} e^{3 t}
\end{array}\right]
$$

and

$$
y=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
C_{1} e^{t} \\
C_{2} e^{2 t} \\
C_{3} e^{3 t}
\end{array}\right] .
$$

\#15 A 3 by 3 matrix A has eigenvalues 1,2 , and 3 . What are the eigenvalues of the matrix $B=A^{2}-I$? Why?

Solution: Suppose v is an eigenvector for the matrix A corresponding to the eigenvalue i. Then

$$
A^{2} v=A(A v)=A(i v)=i(A v)=i(i v)=i^{2} v
$$

and

$$
\left(A^{2}-I\right) v=a^{2} v-v=i^{2} v-v=\left(i^{2}-1\right) v .
$$

Thus the eigenvalues of $A^{2}-I$ are $1^{1}-1=0,2^{2}-1=3$, and $3^{2}-1=8$.
\#16 In each part state whether or not the given matrix is diagonalizable and give your reason.
(a) $R=\left[\begin{array}{lll}3 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$
(b) $P=\left[\begin{array}{lll}3 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$
(c) $Q=\left[\begin{array}{lll}3 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$

Solution: (a) The characteristic polynomial is $(1-\lambda)(2-\lambda)(4-\lambda)$. Since there are three distinct roots (and hence 3 eigenvalues), the matrix is diagonalizable.
(b) The characteristic polynomial is $(2-\lambda)^{2}(3-\lambda)$ and $E_{2}=N\left(\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\right)$. Thus E_{2} has dimension 1 , so the geometric multiplicity of the eigenvalue 2 is not equal to its algebaic multiplicity. Hence P is not diagonalizable.
(c) The characteristic polynomial is $(2-\lambda)^{2}(3-\lambda)$ and $E_{2}=N\left(\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right)$. Thus E_{2} has dimension 2, so the geometric multiplicity of the eigenvalue 2 is equal to its algebaic multiplicity. Hence Q is diagonalizable.

