Problems in Calculus and Analysis¹

1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that for every $a, b, \frac{f(a)+f(b)}{2} = f\left(\frac{a+b}{2}\right)$. Show that $f(x) = \alpha x + \beta$ for some α, β .

If we drop the condition that f is continuous, does the same conclusion hold?

- 2. Suppose $f : \mathbb{R} \to R$ is a *n*-times differentiable function, and suppose $a_1 < a_2 < \ldots < a_{n+1}$ are such that $f(a_i) = 0$ for each $i \in \{1, \ldots, n+1\}$. Show that there is some $b \in [a_1, a_{n+1}]$ such that $f^{(n)}(b) = 0$.
- 3. Show that there is a unique real number c such that for every differentiable function $f:[0,1] \to \mathbb{R}$ with f(0) = 0 and f(1) = 1, the equation f'(x) = cx has a solution.
- 4. Suppose f(x) is differentiable and has at least two zeros on the interval [a, b]. Prove that for any constants c_0 and c_1 , the function $c_0 f(x) + c_1 f'(x)$ has a root on the interval [a, b].
- 5. Find all continuous functions f such that for every x > 0,

$$\int_1^x f(t)dt = \int_x^{x^2} f(t)dt.$$

- 6. Does there exist a collection \mathcal{F} of uncountably many subsets of \mathbb{N} such that for every $A, B \in \mathcal{F}$, either $A \subset B$ or $B \subset A$?
- 7. Let $f: [0,1] \longrightarrow (0,1)$ be continuous. Show that the equation $2x \int_0^x f(t)dt = 1$ has exactly one solution on the interval [0,1].
- 8. Suppose that n is a nonnegative integer and

$$f(x) = c_0 e^{r_0 x} + \dots + c_n e^{r_n x}$$

where c_0, \ldots, c_n and r_0, \ldots, r_n are real numbers with the r_i distinct. Prove that if f has more than n roots then $c_0 = c_1 = \cdots = c_n = 0$. (Hint: Use induction on n.)

9. Suppose $f : \mathbb{R} \longrightarrow \mathbb{R}$ has the property that for all $a \in \mathbb{R}$, $\lim_{x \longrightarrow a} f(x)$ exists. Let S be the set points $b \in \mathbb{R}$ such that f is discontinuous at b. Prove that S is countable.

¹Version:11-3-15