Problems in Calculus and Analysis ${ }^{1}$

1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that for every $a, b, \frac{f(a)+f(b)}{2}=f\left(\frac{a+b}{2}\right)$. Show that $f(x)=\alpha x+\beta$ for some α, β.
If we drop the condition that f is continuous, does the same conclusion hold?
2. Suppose $f: \mathbb{R} \rightarrow R$ is a n-times differentiable function, and suppose $a_{1}<a_{2}<\ldots<$ a_{n+1} are such that $f\left(a_{i}\right)=0$ for each $i \in\{1, \ldots, n+1\}$. Show that there is some $b \in\left[a_{1}, a_{n+1}\right]$ such that $f^{(n)}(b)=0$.
3. Show that there is a unique real number c such that for every differentiable function $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=0$ and $f(1)=1$, the equation $f^{\prime}(x)=c x$ has a solution.
4. Suppose $f(x)$ is differentiable and has at least two zeros on the interval $[a, b]$. Prove that for any constants c_{0} and c_{1}, the function $c_{0} f(x)+c_{1} f^{\prime}(x)$ has a root on the interval $[a, b]$.
5. Find all continuous functions f such that for every $x>0$,

$$
\int_{1}^{x} f(t) d t=\int_{x}^{x^{2}} f(t) d t
$$

6. Does there exist a collection \mathcal{F} of uncountably many subsets of \mathbb{N} such that for every $A, B \in \mathcal{F}$, either $A \subset B$ or $B \subset A$?
7. Let $f:[0,1] \longrightarrow(0,1)$ be continuous. Show that the equation $2 x-\int_{0}^{x} f(t) d t=1$ has exactly one solution on the interval $[0,1]$.
8. Suppose that n is a nonnegative integer and

$$
f(x)=c_{0} e^{r_{0} x}+\cdots+c_{n} e^{r_{n} x}
$$

where c_{0}, \ldots, c_{n} and r_{0}, \ldots, r_{n} are real numbers with the r_{i} distinct. Prove that if f has more than n roots then $c_{0}=c_{1}=\cdots=c_{n}=0$. (Hint: Use induction on n.)
9. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ has the property that for all $a \in \mathbb{R}, \lim _{x \rightarrow a} f(x)$ exists. Let S be the set points $b \in \mathbb{R}$ such that f is discontinuous at b. Prove that S is countable.

[^0]
[^0]: ${ }^{1}$ Version:11-3-15

