1. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is a continuous function such that for every \(a, b \), \[\frac{f(a) + f(b)}{2} = f \left(\frac{a + b}{2} \right). \] Show that \(f(x) = \alpha x + \beta \) for some \(\alpha, \beta \).

If we drop the condition that \(f \) is continuous, does the same conclusion hold?

2. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is a \(n \)-times differentiable function, and suppose \(a_1 < a_2 < \ldots < a_{n+1} \) are such that \(f(a_i) = 0 \) for each \(i \in \{1, \ldots, n+1\} \). Show that there is some \(b \in [a_1, a_{n+1}] \) such that \(f^{(n)}(b) = 0 \).

3. Show that there is a unique real number \(c \) such that for every differentiable function \(f : [0, 1] \to \mathbb{R} \) with \(f(0) = 0 \) and \(f(1) = 1 \), the equation \(f'(x) = cx \) has a solution.

4. Suppose \(f(x) \) is differentiable and has at least two zeros on the interval \([a, b] \). Prove that for any constants \(c_0 \) and \(c_1 \), the function \(c_0 f(x) + c_1 f'(x) \) has a root on the interval \([a, b] \).

5. Find all continuous functions \(f \) such that for every \(x > 0 \),
 \[\int_1^x f(t) \, dt = \int_x^{x^2} f(t) \, dt. \]

6. Does there exist a collection \(\mathcal{F} \) of uncountably many subsets of \(\mathbb{N} \) such that for every \(A, B \in \mathcal{F} \), either \(A \subset B \) or \(B \subset A \)?

7. Let \(f : [0, 1] \to (0, 1) \) be continuous. Show that the equation \(2x - \int_0^x f(t) \, dt = 1 \) has exactly one solution on the interval \([0, 1] \).

8. Suppose that \(n \) is a nonnegative integer and
 \[f(x) = c_0 e^{r_0 x} + \cdots + c_n e^{r_n x} \]
 where \(c_0, \ldots, c_n \) and \(r_0, \ldots, r_n \) are real numbers with the \(r_i \) distinct. Prove that if \(f \) has more than \(n \) roots then \(c_0 = c_1 = \cdots = c_n = 0 \). (Hint: Use induction on \(n \).)

9. Suppose \(f : \mathbb{R} \to \mathbb{R} \) has the property that for all \(a \in \mathbb{R} \), \(\lim_{x \to a} f(x) \) exists. Let \(S \) be the set points \(b \in \mathbb{R} \) such that \(f \) is discontinuous at \(b \). Prove that \(S \) is countable.