Set 9: Problems on Geometry

1. If the angle A of a triangle $A B C$ is doubled, but the lengths of the sides $A B$ and $A C$ are kept the same, the area of the triangle $A B C$ stays the same. Find the angle A.
2. In a triangle $A B C$ with side lengths a, b, c, angle A is twice angle B. Show that $a^{2}=b(b+c)$.
3. Prove that if one angle of a triangle is equal to 120 degrees, then the triangle formed by the feet of the angle bisectors is right angled.
4. Show that any rectangle inscribed in an ellipse has its sides parallel to the axes of the ellipse (unless the ellipse is a circle).
5. Let C be a circle and x, y, z be three points on circle and T be the triangle formed by x, y, z. Let a_{x} be the length of the angle bisector at x, a_{y} be the length of the angle bisector at y and a_{z} be the length of the angle bisector at z. Let b_{x} be the length of the segment obtained by extending the angle bisector at x until it hits the circle on the other side of $y z$. Define b_{y} and b_{z} similarly. Prove that $\sqrt{a_{x} a_{y} a_{z} b_{x} b_{y} b_{z}}$ is equal to the product of the lengths of the sides of the triangle.
6. Determine the set of triples (a, b, c) such that the line $a x+b y=1$ us tangent to the circle $x^{2}+y^{2}=c^{2}$.
7. Let T_{j} be an equilateral triangle of sidelength $2 j-1$. For a fixed line L in the plane, place each triangle T_{1}, T_{2}, T_{3}, etc. so that one side of each triangle lies on L and each successive triangle shares a vertex with the previous. Let v_{j} be the vertex of T_{j} that is not on L. Prove that there is a parabola that passes through all of the points v_{j} and prove that all of the v_{j} have integerdistance from the focus of the parabola.
8. Let A, B, C be vertices of a triangle, and let L be the midpoint of side $A B, M$ be the midpoint of side $B C$ and N be the midpoint of side $A C$. Prove that there is another triangle whose side lengths are equal to $\overline{C L}, \overline{A M}$ and $\overline{B N}$.
