1. Define a total ordering on $2^{[} n$] by $S<T$ if $|S|<|T|$ or if $|S|=|T|$ and the largest element in $S \oplus T$ belongs to T. (Not for handing in: check that this relation is indeed a total order on $\mathcal{P}([n]))$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a k-subset of $[n]$ with $a_{1}<a_{2}<$ $\ldots<a_{k}$. Express (with explanation) the number of sets $B \in\binom{[n]}{k}$ with $B<A$, as a sum of binomial coefficients.
2. Consider the following process: start with the trivial partition of $[n]$ into one part. Then apply the following step: take a part of the partition that has more than one element and break it into two parts. Repeat this step until the resulting partition consists of n singleton blocks. In how many ways can this be process be carried out?
3. Recall that B_{n} is the number of partitions of a set of size n. Let C_{n} be the number of partitions of a set of size n such that any two consecutive integers are in different blocks. Prove that $C_{n}=B_{n-1}$, for all $n \geq 1$.
4. Let Q be the set of all univariate polynomials $p(x)$, that map integers to integers. Show that a degree n polynomial p belongs to Q if and only if it can be written in the form $\sum_{i=0}^{n} a_{i}\binom{x}{i}$, where the a_{i} are integers. (In other words the polynomials $\binom{x}{i}$ form a basis for the \mathbf{Z}-module Q.)
5. Let m be a positive integer. If λ is a partition of the integer n, define $u_{m}(\lambda)$ to be the number of integers that occur at least m times in λ. Let $v_{m}(\lambda)$ be the number of parts that are equal to m. Show that, for fixed m, the sum of $u_{m}(\lambda)$ is equal to the sum of $v_{m}(\lambda)$, where both sums range over all partitions of some fixed integer n. (Note: a partition of an integer n is defined to be a nonincreasing sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of integers that sum to n. The numbers $\lambda_{1}, \ldots, \lambda_{k}$ are the parts of λ.)
6. Determine (with explanation) the connection coefficients for expressing the rising factorials in terms of falling factorials. In other words, for each $n \geq 0$, find coefficients $\left(a_{n, k}: 0 \leq k \leq n\right)$ so that $x^{\bar{n}}=\sum_{k=0}^{n} a_{n, k} x^{\underline{k}}$. (Connection coefficients will be discussed in class.)
7. (a) Show that $S(n, k) \sim k^{n} / k$!, provided that $k<\frac{n}{\ln n}$. (Here we assume that k is a function of n, which may be the constant function).
(b) For fixed k, determine the asymptotic behavior of $s(n, n-k)$ as $n \longrightarrow \infty$.
(c) (Bonus) The asymptotic behavior found in the previous part can be valid even if k is allowed to grow with n, as long as it does not grow too fast. Determine how fast k can grow without invalidating the formula.

More on back ...
8. Let k be a positive integer and let c_{1}, \ldots, c_{k} be complex numbers. The linear constant coefficient recurrence relation defined by c_{1}, \ldots, c_{k} in variables $\underline{z}=\left(z_{n}: n \in \mathbb{N}\right)$ is the system consisting of the equations

$$
z_{n}=\sum_{i=1}^{k} c_{i} z_{n-i},
$$

for all $n \geq k$.
Prove the following:
Theorem. Let c_{1}, \ldots, c_{k} be complex numbers with $c_{k} \neq 0$, and let $\underline{a}=\left(a_{n}: n \in \mathbb{N}\right)$ be a sequence of complex numbers. Let $p(x)$ be the polynomial defined by: $p(x)=$ $1-\sum_{i=1}^{k} x^{i} c_{i}$. Let $\prod_{i=1}^{j}\left(1-\lambda_{i} x\right)^{m_{i}}$ be the factorization of p into linear factors (with $\lambda_{1}, \ldots, \lambda_{j}$ distinct). Then the following are equivalent:
(a) \underline{a} is a solution to the recurrence relation defined by c_{1}, \ldots, c_{k}.
(b) The ordinary generating function of $\underline{a}, \sum_{n \geq 0} a_{n} x^{n}$ is equal to $q(x) / p(x)$ where $q(x)$ has degree at most $k-1$.
(c) There are polynomials $w_{1}, w_{2}, \ldots, w_{j}$ where for $1 \leq i \leq j, w_{i}$ has degree at most $m_{i}-1$ such that for all $n \in \mathbb{N}, a_{n}=\sum_{i=1}^{j} w_{i}(n) \lambda_{i}^{n}$. (You may use, without proof, the following standard result from algebra: if $r_{1}(x), \ldots, r_{h}(x)$ are univariate polynomials that have no common root then there are polynomials $s_{1}(x), \ldots, s_{h}(x)$ such that $\sum_{i=1}^{h} s_{1}(x) r_{1}(x)=1$.)

