MATH 642:582-Fall, 2003
Assignment 2-Due October 3 (Version: September 18)

1. Fix a positive integer p. Find an exact expression for the number of permutations of $[n]$ that have no cycle of length exactly p. (Your expression will be a sum, but it should be as simple as possible). Determine the asymptotics of your expression as n tends to ∞.
2. Prove that the degree sequence of a graph on more than four edges is edge-reconstructible. More precisely, for any graph G with $m \geq 4$ edges, if you are given a multiset consisting of the m unlabeled graphs on $m-1$ edges obtained by deleting each edge of G in turn, then the degree sequence of G can be completely determined. (This problem does not use inclusion-exclusion, just thinking.)
3. Jukna, Problem 3.3
4. Jukna, Problem 3.7
5. (a) Consider a finite probability space Ω, and subsets (events) $A_{1}, A_{2}, \ldots, A_{n}$. As usual, for $I \subseteq[n]$, define $A_{I}=\cap_{i \in I} A_{i}$ and let $p_{I}=\operatorname{prob}\left(A_{I}\right)$. Let $B_{1}, B_{2}, \ldots, B_{n}$ be another set of events and define $q_{I}=\operatorname{prob}\left(B_{I}\right)$. Suppose that $p_{I}=q_{I}$ for all $I \neq[n]$ but $p_{[n]} \neq q_{[n]}$. Prove that Ω must have at least 2^{n-1} elements.
(b) Give an example to show that the bound in the first part is best possible.
6. A Hamiltonian path in a graph $G=(V, E)$ is a permutation of the vertices v_{1}, \ldots, v_{n} such that each pair v_{i}, v_{i+1} is adjacent in G for $1 \leq i<n$. A naive algorithm for testing whether a graph has a Hamiltonian path requires checking all possible permutations of the vertex set, and thus requires $n!p o l y(n)$ number of steps, where $\operatorname{poly}(n)$ denotes an unspecified polynomial function of n. The purpose of this problem is to derive an algorithm that runs in $2^{n} \operatorname{poly}(n)$ steps (and also requires memory size only poly (n)).
(a) A walk in a graph is a sequence v_{1}, \ldots, v_{k} of vertices, possibly with repitition such that each pair v_{i}, v_{i+1} is adjacent in the graph. For vertices x, y and integer k let $W_{G}(x, y, k)$ denote the number of k step walks from x to y. Give a method for computing $W_{G}(x, y, k)$ that uses at most poly (n, k) steps.
(b) Let $H_{G}(x, y)$ denote the number of Hamiltonian paths in G. Use the answer to the previous problem and inclusion-exclusion to derive a formula for computing $H_{G}(x, y)$ that uses at most 2^{n} poly (n) computation steps. (Without being too precise here about what a "computation step" is, we assume that adding, subtracting or multiplying two k bit numbers can be done in $\operatorname{poly}(k)$ computation steps.
