Assignment 6 (OPTIONAL)-Due December 12 (Version: December 4, 2003)

1. Jukna 8.5
2. In this problem a "depth k circuit" over variables x_{1}, \ldots, x_{n} is an acyclic digraph satisfying:

- The vertices can be partitioned into layers $L_{0}, L_{1}, \ldots, L_{k}$ so that each edge goes from L_{i} to L_{i-1} for some i.
- L_{0} consists of a single vertex called the output node.
- L_{k} consists of $2 n$ vertices of in-degree 0 , labeled $x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}$ (These are the input vertices).
- Each noninput vertex (or "gate") at even distance from the root is labeled by \wedge and each at odd distance from the root is labeled by \vee. (Thus the root is labeled \wedge.

Such a circuit computes a boolean function in the obvious way. The size of a circuit is the number of gates. The bottom fan-in of the circuit is the maximum in-degree of gates at level $k-1$.
Let $P(n, k)$ be the size of the smallest circuit computing the parity (sum mod 2) function on n variables. The purpose of this problem is to prove the following theorem of HÅstad: $P(n, k) \geq 2^{c_{0}\left(c_{1} n\right)^{1 / k-1}}$ for some positive constants c_{0} and c_{1}.
(a) Prove that $P(n, 2)=2^{n-1}$.
(b) Prove the following Lemma: Let $n=m^{k-1}$ and $s, t \leq m / 10$. Let f be an n variate boolean function. Suppose f can be computed by a circuit C having depth k, bottom fan-in at most t and size at most 2^{s}. Then there is a restriction ρ of f leaving m^{k-2} variables unfixed such that the restriction $f\left\lceil_{\rho}\right.$ can be computed by a circuit of depth $k-1$, size at most 2^{s} and bottom fan-in at most s. (Hint: Use the switching lemma).
(c) Prove the theorem.
3. (a) Let x_{1}, \ldots, x_{n} be real variables and for $J \subseteq\{1, \ldots, n\}$ write x^{J} for $\prod_{j \in J} x_{j}$. Let $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ be a boolean function. Prove that there are unique real numbers ($a_{J}: J \subseteq[n]$) such that the real polynomial $\sum_{j} a_{j} x_{J}$ agrees with f on $\{0,1\}^{n}$.
(b) Define the degree of a boolean function $f, \operatorname{deg}(f)$, to be the degree of the representing polynomial found in the previous section. Prove that the decision tree complexity $D T(f)$ is at least $\operatorname{deg}(f)$.
(c) An n-variate function f is evasive if $D T(f)=n$, i.e., is a bad as possible. Prove that a non-evasive function must satisfy the condition that the number of inputs in $f^{-1}(1)$ having an even number of 1 's is equal to the number of inputs in f^{-1} having an odd number of 1 's.
4. If f is an n variate boolean function and σ is a permutation of $[n]$ we write f_{σ} for the boolean function defined by $f_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. The automorphism group of f is the set of σ such that $f=f_{\sigma}$ (which is obviously a group). f is weakly symmetric if the automorphism group is transitive, which means that for any i, j in $[n]$ there is an automorphism σ mapping i to j.
Prove the following theorem of Rivest and Vuillemin (1976). Suppose $n=p^{k}$ for some prime p and integer k. Suppose that f is a boolean function on n variables, f is weakly symmetric and that $f\left(0^{n}\right) \neq f\left(1^{n}\right)$. Then f is evasive(!) (Hint: Let G be the automorphism group of f and let \mathcal{P} be the partition of $\{0,1\}^{n}$ into orbits under the action of G. Prove that there are exactly two orbits whose size is not divisible by p. Then use the previous problem.)

