1. Consider the multi-commodity flow problem: Given a graph $G = (V, E)$ with a non-negative valued capacity function C on the edges and k triples (s_i, t_i, D_i), $1 \leq i \leq k$ where $s_i, t_i \in V$ and D_i is a nonnegative real number. A flow is a set of k functions f_1, \ldots, f_k defined on $V \times V$ such that: (1) for every $i \in [k]$ and each $v \in V - \{s_i, t_i\}$, $\sum_w f_i(w, v) = \sum_w f_i(v, w)$. (2) For each edge $e = vw$, $\sum_i f_i(v, w) + f_i(w, v) \leq C(e)$. The value of the flow is the vector (V_1, \ldots, V_k) where $V_i = \sum_w f_i(w, t_i)$. The maximum concurrent flow problem is to find a flow that maximizes $\min_i \{V_i / D_i\}$.

(a) Let P_i denote the set of paths from s_i to t_i. Formulate the maximum concurrent flow problem as a linear program whose variables correspond to elements of $\bigcup_i P_i$.

(b) Form the dual of the LP of the first part.

(c) Show that the optimal solution of the dual is equal to the minimum over all metrics ρ defined on G of the ratio $\sum_{vw \in E} C(v, w) \rho(v, w) / \sum_{i=1}^k D_i \rho(s_i, t_i)$.

2. Let $M = (X, \rho)$ be a finite metric space on n vertices. Recall that the tree volume $TVOL(M)$ is the minimum over all trees on X of the product of the edge lengths, and the harmonic volume $HVOL(M)$ is the harmonic mean over all $n!$ orderings x_1, \ldots, x_n of the points of $\prod_{i=1}^{n-1} \rho(x_i, x_{i+1})$. Prove that $nTVOL(M) \geq 2^{n-1} HVOL(M)$. (Hint: One way to do this is by induction on n).

3. The purpose of this problem is to prove a result stated in class that every metric space has a probabilistic embedding into the real line whose probabilistic distortion is $O(\log n)$. Here's the set up.

- Let (X, ρ) be a metric space on n points.
- Let $b \geq 1$ and S be a positive integer.
- For $k \geq 0$, let $p_k = \frac{1}{2^b k}$.
- Let P be a random variable on $[0, 1]$ obtained by selecting uniformly from the set $\{p_0, p_1, \ldots, p_{S-1}\}$.
- Let A be a random subset of X obtained as follows. Select P as above. Then for each $x \in X$, put x in A independently with probability P.
- Define $f : X \rightarrow \mathbb{R}$ to be $f(x) = \rho(x, A)$. (So f is a random mapping depending on A).

As we noted in class, this is non-expansive (independent of A). We will show:

Claim. Assume $b^S \geq n$. For each pair $u \neq v \in X$, $\mathbb{E}[|f(u) - f(v)|] \geq \Omega(\rho(u, v)/Sb)$. (Note that when $b = 2$ and $S = \log n$ we get the result stated at the beginning of the problem.)

Fix $u, v \in X$ Here is an outline of a proof of this claim; you’ll be asked to provide some details.
(a) For a point \(x \in X \), let \(g(x) = \rho(x, \{u, v\}) \) and let \(Y = \{ x : g(x) \leq \rho(u, v)/2 \} \). Order the points of \(Y \) as \(y_1, \ldots, y_s \) in nondecreasing order of \(g(x) \). For \(1 \leq i \leq s \), let \(g_i = g(y_i) \) and let define \(g_{s+1} = \rho(u, v)/2 \). Define \(Z_i \) for \(1 \leq i \leq s \) to be the random variable that is 1 if \(\min(f(u), f(v)) \leq g_i \leq g_{i+1} \leq \max(f(u), f(v)) \). Prove that \(|f(u) - f(v)| \geq \sum_{i=1}^{n} Z_i(g_{i+1} - g_i) \).

(b) Prove that for each \(i \in [s] \) \(\Pr[Z_i = 1] = \Omega(1/Sb) \). (This is the main step. If you need an additional hint, ask me.)

(c) Prove the claim.

4. Let \(T_n \) be the balanced rooted binary tree of depth \(n \) (which has \(2^{n+1} - 1 \) vertices) with the usual graph distance metric \(d_T \). The depth of a vertex is its distance from the root. View the vertex set \(V = V_n \) of \(T \) as the set of binary strings of length \(\leq n \) (where the root is the empty string \(\Lambda \) and the children of \(\alpha \) are \(\alpha 0 \) and \(\alpha 1 \)). Write \(\alpha \prec \beta \) if \(\alpha \) is a prefix of \(\beta \) which means that it is an ancestor of \(\beta \) in the tree. If \(\beta \in \{0, 1\}^n \), let \(\beta(j) \) be the prefix of \(\beta \) of length \(j \), which corresponds to the \(j \)th node on the path from the root to the leaf \(\beta \).

The purpose of this problem is to give a relatively simple proof of a theorem of Bourgain: every embedding of a depth \(n \) binary tree into \(\ell_2 \) has distortion \(\Omega(\sqrt{\log n}) \). Throughout \(\| \cdot \| \) denotes the Euclidean norm.

(a) Prove that for any three vectors \(a, b, c \in \mathbb{R}^n \) we have \(\|a - 2b + c\|^2 = 2\|a - b\|^2 + 2\|b - c\|^2 - \|a - c\|^2 \).

(b) Let \(A = A(n) = \{(p, j) : 2^j \leq \min\{p, n-p\}\} \). Given a sequence \(\bar{x} = x_0, x_1, \ldots, x_n \) where each \(x_i \) is a vector in \(\ell_2 \) we define \(\lambda(\bar{x}, p, j) = \|x_{p-2^j} + x_{p+2^j} - 2x_p\|/4^{i+1} \).

Prove that \(\sum_{(p, j) \in A} \lambda(\bar{x}, p, j)^2 \leq \sum_{j=0}^{n-1} \|x_{j+1} - x_j\|^2 \).

(c) Now suppose \(f \) is a non-expansive map from \(T_n \) into \(\ell_2 \).

An equi-triple is a triple \((u, v, w)\) of vertices where \(u \prec v \prec w \) and \(d_T(v, w) = d_T(u, v) \). For an equi-triple \((u, v, w)\) define \(\delta(u, v, w) = \|f(u) - 2f(v) + f(w)\|/d_T(u, v) \).

A fork is a quadruple \((u, v, w, w')\) where \((u, v, w)\) and \((u, v, w')\) are both equi-triples and \(v \) is the least common ancestor of \(w, w' \). Show that if \((u, v, w, w')\) is any fork then the distortion of \(f \) is at least \(1/(\delta(u, v, w) + \delta(u, v, w')) \).

(d) For a binary string \(\beta \) of length \(n \) and \(0 \leq j \leq n \) let \(x_j^\beta = f(\beta(j)) \) and let \(\bar{x}^\beta \) be the sequence \(x_0^\beta, \ldots, x_n^\beta \). For each \((p, j) \in A\), express \(\sum_{\beta \in \{0, 1\}^n} \lambda(\bar{x}^\beta, p, j)^2 \) as a linear combination of terms \(\|\delta(u, v, w)\|^2 + \|\delta'(u, v, w')\|^2 \), where \((u, v, w, w')\) ranges over some set of forks.

(e) Finish the proof of the theorem.