The 72nd William Lowell Putnam Mathematical Competition Saturday, December 3, 2011

A-1 Define a growing spiral in the plane to be a sequence of points with integer coordinates $P_{0}=(0,0), P_{1}, \ldots, P_{n}$ such that $n \geq 2$ and:

- The directed line segments $P_{0} P_{1}, P_{1} P_{2}, \ldots, P_{n-1} P_{n}$ are in the successive coordinate directions east (for $P_{0} P_{1}$), north, west, south, east, etc.
- The lengths of these line segments are positive and strictly increasing.
[Picture omitted.] How many of the points (x, y) with integer coordinates $0 \leq x \leq 2011,0 \leq y \leq 2011$ cannot be the last point, P_{n} of any growing spiral?

A-2 Let a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots be sequences of positive real numbers such that $a_{1}=b_{1}=1$ and $b_{n}=b_{n-1} a_{n}-2$ for $n=2,3, \ldots$. Assume that the sequence $\left(b_{j}\right)$ is bounded. Prove that

$$
S=\sum_{n=1}^{\infty} \frac{1}{a_{1} \ldots a_{n}}
$$

converges, and evaluate S.
A-3 Find a real number c and a positive number L for which

$$
\lim _{r \rightarrow \infty} \frac{r^{c} \int_{0}^{\pi / 2} x^{r} \sin x d x}{\int_{0}^{\pi / 2} x^{r} \cos x d x}=L
$$

A-4 For which positive integers n is there an $n \times n$ matrix with integer entries such that every dot product of a row with itself is even, while every dot product of two different rows is odd?

A-5 Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable functions with the following properties:

- $F(u, u)=0$ for every $u \in \mathbb{R} ;$
- for every $x \in \mathbb{R}, g(x)>0$ and $x^{2} g(x) \leq 1$;
- for every $(u, v) \in \mathbb{R}^{2}$, the vector $\nabla F(u, v)$ is either $\mathbf{0}$ or parallel to the vector $\langle g(u),-g(v)\rangle$.

Prove that there exists a constant C such that for every $n \geq 2$ and any $x_{1}, \ldots, x_{n+1} \in \mathbb{R}$, we have

$$
\min _{i \neq j}\left|F\left(x_{i}, x_{j}\right)\right| \leq \frac{C}{n}
$$

A-6 Let G be an abelian group with n elements, and let

$$
\left\{g_{1}=e, g_{2}, \ldots, g_{k}\right\} \varsubsetneqq G
$$

be a (not necessarily minimal) set of distinct generators of G. A special die, which randomly selects one of the elements $g_{1}, g_{2}, \ldots, g_{k}$ with equal probability, is rolled m
times and the selected elements are multiplied to produce an element $g \in G$. Prove that there exists a real number $b \in(0,1)$ such that

$$
\lim _{m \rightarrow \infty} \frac{1}{b^{2 m}} \sum_{x \in G}\left(\operatorname{Prob}(g=x)-\frac{1}{n}\right)^{2}
$$

is positive and finite.
B-1 Let h and k be positive integers. Prove that for every $\varepsilon>0$, there are positive integers m and n such that

$$
\varepsilon<|h \sqrt{m}-k \sqrt{n}|<2 \varepsilon
$$

B-2 Let S be the set of all ordered triples (p, q, r) of prime numbers for which at least one rational number x satisfies $p x^{2}+q x+r=0$. Which primes appear in seven or more elements of S ?

B-3 Let f and g be (real-valued) functions defined on an open interval containing 0 , with g nonzero and continuous at 0 . If $f g$ and f / g are differentiable at 0 , must f be differentiable at 0 ?

B-4 In a tournament, 2011 players meet 2011 times to play a multiplayer game. Every game is played by all 2011 players together and ends with each of the players either winning or losing. The standings are kept in two $2011 \times$ 2011 matrices, $T=\left(T_{h k}\right)$ and $W=\left(W_{h k}\right)$. Initially, $T=$ $W=0$. After every game, for every (h, k) (including for $h=k$), if players h and k tied (that is, both won or both lost), the entry $T_{h k}$ is increased by 1 , while if player h won and player k lost, the entry $W_{h k}$ is increased by 1 and $W_{k h}$ is decreased by 1 .
Prove that at the end of the tournament, $\operatorname{det}(T+i W)$ is a non-negative integer divisible by 2^{2010}.

B-5 Let a_{1}, a_{2}, \ldots be real numbers. Suppose that there is a constant A such that for all n,

$$
\int_{-\infty}^{\infty}\left(\sum_{i=1}^{n} \frac{1}{1+\left(x-a_{i}\right)^{2}}\right)^{2} d x \leq A n
$$

Prove there is a constant $B>0$ such that for all n,

$$
\sum_{i, j=1}^{n}\left(1+\left(a_{i}-a_{j}\right)^{2}\right) \geq B n^{3}
$$

B-6 Let p be an odd prime. Show that for at least $(p+1) / 2$ values of n in $\{0,1,2, \ldots, p-1\}, \sum_{k=0}^{p-1} k!n^{k}$ is not divisible by p.

