Review Problems for exam 1

Note: these problems are in addition to the homework problems.
You can watch the solutions on the posted streaming power points.

1. Let

$$
F(x)=\left\{\begin{array}{cc}
x^{3}+A & x \leq 2 \\
6 x+1 & 2<x<3 \\
x^{2}+2 & x \geq 3
\end{array}\right.
$$

(a) Find the value of A that makes $F(x)$ continuous at $x=2$.
(b) For the constant A from (a): is $F(x)$ differentiable at $x=2$?
(c) Is $F(x)$ differentiable at $x=3$?
2. Show that the equation $x^{3}=x^{2}+1$ has at least one solution.
3. Use the definition of the derivative as a limit to find the derivative of $f(x)=\frac{1}{x+2}$
4. Find the center and the radius of the circle $x^{2}+y^{2}-2 x+4 y=0$
5. Evaluate each of the following limits.
(a) $\lim _{x \rightarrow 3} \frac{\sqrt{x}-\sqrt{3}}{x-3}+3 x^{2}$
(b) $\lim _{x \rightarrow 0} \frac{\tan (5 x)}{\sin (3 x)}$
(c) $\lim _{x \rightarrow 3} \frac{|x-3|}{x^{2}-9}$
6. Find the derivatives of the following functions.
(a) $F(x)=\sqrt{\frac{e^{x}}{x^{2}+3}}$
(b) $g(x)=3 \cos ^{4} x \cdot \sin x^{9}$
(c) $f(x)=e^{\sin x}$
(d) $h(x)=\left(\frac{x^{2}-\ln x}{3 x+2}\right)^{9}$
(e) $F(x)=\frac{\tan x\left(x^{2}-4 x\right)}{\ln x}$
7. Let $g(x)$ be a differentiable function such that $g(1)=2, g(2)=5, g(3)=7$, $g(4)=2, g^{\prime}(1)=3, g^{\prime}(2)=2, g^{\prime}(3)=8, g^{\prime}(4)=10$. Let $f(x)=x^{2}+x$.
Find the exact value of: (a) $(g f)^{\prime}(2)$
(b) $\left(\frac{f}{g}\right)^{\prime}(3)$
(c) $(g \circ f)(1)$.
8. Solve $\log (5 x)+\log (x-1)-2=0$
9. (a) Describe the rectilinear motion given at time t (in seconds) by $s(t)=20+8 t-t^{2}$ (in meters), for $0 \leq t \leq 10$.
(b) Find the total distance traveled.
10. Find the domain of the function $f(x)=\ln \left(x^{2}-4\right)$

