Math 152, Summer 2010, Review Problems for Midterm #1

1. Find the following indefinite integrals.

a)
$$\int x^2 e^{-x} dx$$

b)
$$\int x^2 \arctan x \, dx$$

c)
$$\int \cos^4 2x \sin^3 2x \, dx$$

a)
$$\int x^2 e^{-x} dx$$
 b) $\int x^2 \arctan x dx$ c) $\int \cos^4 2x \sin^3 2x dx$ d) $\int \frac{x^2 - x + 3}{(x+1)(x^2+4)} dx$ e) $\int \frac{dx}{x\sqrt{16-x^2}}$ f) $\int \sin 5x \sin 7x dx$

e)
$$\int \frac{dx}{x\sqrt{16-x^2}}$$

f)
$$\int \sin 5x \sin 7x \, dx$$

- **2.** The region R is bounded by the curves y=2x, $y=\sqrt{8+2x^2}$ and the y-axis. Find the volume of the solid obtained by rotating R: (a) about the x-axis; (b) about the y-axis.
- 3. The base of a solid is the ellipse $x^2 + 4y^2 = 4$. Each cross-section of the solid perpendicular to the x-axis is a square. What is the volume of the solid?
- **4.** Consider the curve $y = \cos x$, $0 \le x \le \pi/2$. Set up integrals representing (a) the length of this curve; (b) the area of the surface formed when the curve is revolved about the x-axis. Evaluate one of these integrals. (The other one can be approximated by numerical methods, but you're not asked to do so.)
- **5.** Find the average value A of $\tan^2 x$ on the interval $0 \le x \le \pi/4$. Is A larger or smaller than the average of the max and min values of $\tan^2 x$ on the interval? Draw a picture which explains this.
- **6.** Let $I = \int_0^2 e^{-x^2} dx$.
 - a) Using the Trapezoidal Rule with n=4 subdivisions gives what approximate value for this integral? (Give an exact answer in terms of e as well as a decimal approximation.)
 - b) Use the error estimate for the Trapezoidal Rule to estimate the accuracy of the approximation in a).
 - c) Let T_N be the approximation to I obtained from the Trapezoidal Rule with N subdivisions. Find a value of N so that $|I - T_N| < 10^{-8}$.
- 7. In a short paragraph, explain what the resolutive-compositive process of integral calculus is all about, and what are its four steps.
- 8. Compute the work required to pump all the water out of the outlet at the tip of a tank in the shape of a circular cone with height h and base radius r that's filled with water. Take the mass density of water to be ρ and the acceleration due to gravity to be g.