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1 Overview

Given a positive integer n, we want to determine whether n is prime in time polylog n. Since the
input size for this problem is log n, this would mean an efficient algorithm for testing primality.
Since the 1970s, we have had results of the following types:

• Efficiently-verifiable certificates of primality. (See Lecture 13.)

• Efficient randomized algorithms1.

• Efficient deterministic algorithms under the Generalized Riemann Hypothesis.

Here, we will establish a deterministic test, due to Agrawal, Kayal, and Saxena, that checks whether
n is prime in time polylog n.

2 Randomized Algorithms

2.1 First Attempt: Using Fermat’s Little Theorem

The following is a well-known result about prime numbers.

Theorem 1. [Fermat’s Little Theorem] If n is a prime number and a is any integer, then an ≡
a (modn).

The immediate question is whether Theorem 1 can be turned into an efficient randomized test
for primality. If the converse of Theorem 1 were true, then testing this congruence for a random
integer a would constitute a randomized primality test. (Though the efficiency of this test would
still need to be established separately.) It turns out, though, that the converse is not true. There
exist composite numbers n such that for all integers a, an ≡ a (modn) (the so-called Carmichael
Numbers). So, no primality test based entirely on Fermat’s Little Theorem can exist.

1By efficient randomized primality test, we mean an algorithm A (n) that, for every n

– runs in time polylogn

– uses randomness

– if n is prime, Pr (output of A (n) = prime) = 1

– if n is composite, Pr (output of A (n) = composite) ≥ α for some constant α (say, 0.9) independent of n
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2.2 The Agrawal-Biswas Algorithm

The test will be based on the following theorem.

Theorem 2. A positive integer n is prime if and only if (X + 1)n ≡ Xn + 1 (modn) in Z [X].

To prove this theorem, we will extract one lemma. (We isolate this lemma, not because it is
particularly difficult, but because we are going to use it again later.)

Lemma 3. Let n be a positive integer. If n is composite, then for any prime factor p of n, n does
not divide

(
n
p

)
.

Proof. Write n as n = pm for some prime p and positive integer m. We have that(
n

p

)
=
n (n− 1) (n− 2) · · · (n− p+ 1)

p (p− 1) · · · 1

=

(
n

p

)(
(n− 1) (n− 2) · · · (n− p+ 1)

(p− 1) · · · 1

)
= m

(
(n− 1) (n− 2) · · · (n− p+ 1)

(p− 1) · · · 1

)
.

Since p | n, no term in the numerator of the fraction in parentheses is divisible by p. So, 1
m

(
n
p

)
is

not divisible by p. This implies that
(
n
p

)
is not divisible by n, as required.

We will now prove Theorem 2.

Proof. By the Binomial Theorem,

(X + 1)n = Xn + 1 +

n−1∑
j=1

(
n

j

)
Xn−j .

If n is prime, then for all j ∈ [n− 1], n |
(
n
j

)
. This implies that (X + 1)n ≡ Xn + 1 (modn), as

required.

If n is composite Lemma 3 implies that the coefficient on Xn−p in (X + 1)n is nonzero mod n, as
required.

Theorem 2 says that we can test primality of n by testing polynomial equality mod n. The natural
way of testing polynomial equality with a randomized algorithm is to evaulate both polynomials
and check if equality holds. This leads to the following candidate algorithm:

Algorithm 1.

• Pick x ∈ [n] uniformly at random.

• If (x+ 1)n ≡ xn + 1 (modn), then output prime, else output composite.
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This natural agorithm does not work. For example, it fails for the Carmichael numbers. The reason
Algorithm 1 can fail is that this method of comparing polynomials only works when the degree of
the polynomials is smaller than the number of possible inputs to the polynomials. In this case,
there are n inputs, but both polynomials have degree n.

Instead, the following modification of the naive Algorithm 1, due to Agrawal and Biswas, yields an
efficient randomized primality test based on Theorem 2.

Algorithm 2.

• Choose a monic degree-3 polynomial Q (X) ∈ Z/nZ [X] uniformly at random.

• Test if (X + 1)n ≡ Xn + 1 (modn,Q (X)).

• If yes, then output prime, else output composite.

The only step whose efficiency requires justification is the computation of the powers of X and
X + 1. But, this is easily accomplished in polynomial time using repeated squaring.

We will now prove the correctness of Algorithm 2.

Proof. We need to show that Algorithm 2 always outputs prime when n is prime, and it outputs
composite a constant fraction of the time when n is composite. By Theorem 2, Algorithm 2
outputs prime when n is prime.

So, assume that n is composite. By Theorem 2, we know that (X + 1)n−Xn−1 is nonzero mod n.

Let p be any prime factor of n. The number of irreducible degree-3 polynomials in Fp is p3−p
3 < p3

3 .
So the probability that Q (X) is irreducible mod p is less than 1

3 . Since p divides n, the probability
that Q (X) is irreducible mod n is less than 1

3 .

Now, assume that Algorithm 2 outputs prime with probability α on input n. This means that with
probability α, (X + 1)n ≡ Xn + 1 (modn,Q (X)). This means that (X + 1)n−Xn + 1 is divisible
by at least

(
α− 2

3

)
n3 distinct irreducible polynomials of degree 3. By the Chinese Remainder

Theorem, (X + 1)n −Xn + 1 is then divisible by the product of these irreducible polynomials, so
we have that its degree, which is n, is at most 3

(
α− 2

3

)
n3. So, we have

n ≥ 3

(
α− 2

3

)
n3

⇒ n ≥ (3α− 2)n3

⇒ 1

n2
≥ 3α− 2

⇒ 2 +
1

n2
≥ 3α

⇒ α ≤ 2

3
+

1

3n2
.

So, if n is composite, Algorithm 2 outputs prime with probability at most 2
3 + 1

3n2 . So, it outputs
composite with probability at least 1 −

(
2
3 + 1

3n2

)
≥ 1

4 , which is a constant independent of n, as
required.
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3 The Deterministic Agrawal-Kayal-Saxena Algorithm

We will now establish an efficient, deterministic primality test by “de-randomizing” the Agrawal-
Biswas Algorithm. This algorithm is due to Agrawal, Kayal, and Saxena. First, we will prove the
following generalization of Theorem 2.

Theorem 4. Let n and a be positive integers such that a is not divisible by n. Then, n is prime if
and only if (X + a)n ≡ Xn + a (modn) in Z [X].

Proof. By the Binomial Theorem,

(X + a)n = Xn + an +

n−1∑
j=1

(
n

j

)
Xn−jaj .

If n is prime, then for all j ∈ [n− 1], n |
(
n
j

)
. This implies that (X + a)n ≡ Xn + an (modn). By

Fermat’s Little Theorem, an ≡ a (modn), so (X + a)n ≡ Xn + a (modn), as required.

Now, consider the case where n is composite and where n has a prime factor p that a does not.
Lemma 3 implies that the binomial coefficient on Xn−p in (X + a)n is nonzero mod n, and the
factor ap will not re-introduce that prime. So, the entire coefficient on Xn−p is nonzero mod n, as
required.

The last case to consider is when every prime factor of n is also a prime factor of a. In this case,
every prime factor of n divides an at least n times. Every prime factor of n divides n at most n
times, so we must have n dividing an. This means that the constant term in (X + a)n is 0 mod n.
But, a is not 0 mod n, so (X + a)n 6≡ Xn + a (modn), as required.

(Note that without the assumption that n not divide a, the statement is actually false.)

We can now state the AKS algorithm.

Algorithm 3.

• If n is a perfect power, output composite.

• Let R = log5 n, A = log6 n.

• If for some b ≤ r, b | n, output composite.

• For each r ≤ R, a ≤ A, test if (X + a)n ≡ Xn + a (modn,Xr − 1).

• If all are identities, output prime, else output composite.

The fact that Algorithm 3 runs in polynomial time follows from the following observations:

• Testing for perfect powers requires testing only log n many powers, each of which can be done
in log n time using binary search.

• The constants R and A are polynomials in log n.
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• Powers of X + a and X can be computed quickly by repeated squaring.

Also, Algorithm 3 is clearly deterministic. So, all that remains is to show that Algorithm 3 outputs
prime if and only if n is prime. Our analysis will use the following definition and lemma.

Definition 5. The order of n mod r, denoted Ordr (n), is the smallest positive integer m such that
nm ≡ 1 (mod r).

Lemma 6. There exists a positive integer r ≤ R such that Ordr (n) ≥ log2 (n).

Proof. Let

N =

blog2(n)c∏
i=1

(
ni − 1

)
.

Let r be such that Ordr (n) < log2 (n). Then, r divides N . We see that N = nΘ(log3(n)). So, N has

at most logN = O
(
log4 (n)

)
prime factors. But, there are log5(n)

log log5(n)
primes less than R, so there is

some r less than R not dividing N . Such an r has Ordr (n) ≥ log2 (n), as required.

We will now prove that Algorithm 3 outputs prime if and only if n is prime.

Proof. If n is prime, then Theorem 4 implies that Algorithm 3 outputs prime, as required. If n is
a perfect power, then Algorithm 3 outputs composite, as required. If n has a small factor, then
Algorithm 3 outputs composite, as required. So, all that remains to check is the case where n is
composite, not a perfect power, and has no small factors.

Suppose that n is as above, and suppose that r is such that Ordr (n) ≥ log2 (n) (guaranteed to
exist by Lemma 6). Let p be a prime dividing n such that p 6≡ 1 (mod r). (Such a p exists because
n 6≡ 1 (mod r).) Let µr =

{
α ∈ Fp | αr = 1

}
be the set of rth roots of unity in Fp (the algebraic

closure of Fp). Assume for a contradiction that Algorithm 3 outputs prime on input n. Then, for
all α ∈ µr and for all a ≤ A, (α+ a)n = αn + a (in Fp).

Let S = {Z + a | a ≤ A} ⊆ Fp [Z], and let T = {n}. (These are initial settings; we will add more
elements to these sets shortly.) We observe that for all Q (Z) ∈ S and for all m ∈ T , for all α ∈ µr,
Q (α)m = Q (αm). We will call this the property that m and Q commute. We wish to find more
elements m and polynomials Q that commute. We will add the elements to T and the polynomials
to Q. We already know that (α+ a)p = αp + a by Fermat’s Little Theorem. So, we can add p to
T .

Now, observe that if Q1 and Q2 commute with m, then Q1Q2 commutes with m, and observe that
if m1 and m2 commute with Q, then m1m2 commutes with Q. This will let us expand S and T
further.

See the notes for Lecture 15 for the conclusion of this proof.
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