Problems on 2-way counting and inclusion-exclusion

1. A frog hops on the number line from 0 to n. If he is on position i, then he can either hop to $i+1$ or to $i+2$. Let F_{n} be the number of ways he can get from 0 to n. Show that $F_{n}=F_{n-1}+F_{n-2}$.
2. How many diagonals does a regular n-gon have?
3. n letters are put in n addressed envelopes. Let d_{n} be the number of ways this can be done such that no letter goes into its designated envelope. Show that $d_{n}=d_{n-1}+(n-$ 1) d_{n-2}.
4. L is a set of n lines in \mathbb{R}^{2}. P is a set of n points in \mathbb{R}^{2}. For each point $p \in P$, let $d(p)$ be the number of lines in L passing through p. Show that

$$
\sum_{p \in P}\binom{d(p)}{2} \leq\binom{ n}{2}
$$

Bonus: Use this to show that

$$
\sum_{p \in P} d(p) \leq \frac{n+n \sqrt{4 n-3}}{2}
$$

5. Prove that

$$
\sum_{i=0}^{n}\binom{n}{i}\binom{2 n}{i}=\binom{3 n}{n}
$$

6. By interpreting both sides of the equation as "the number of ways of \qquad ", show that

$$
\sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}
$$

7. How many positive integers less than 10000 are relatively prime to 10000 ?
8. How many positive integers less than 10000 are relatively prime to 30 ?
9. Show that

$$
n!=n^{n}-\binom{n}{1}(n-1)^{n}+\binom{n}{2}(n-2)^{n} \ldots+(-1)^{i}\binom{n}{i}(n-i)^{n}+\ldots+(-1)^{n}\binom{n}{n}(n-n)^{n} .
$$

10. Show that

$$
\binom{n}{0}+\binom{n+1}{1}+\binom{n+2}{2}+\ldots+\ldots\binom{n+k}{k}=\binom{n+k+1}{k} .
$$

(You may either do this directly using what you know about binomial coefficients, or by 2 -way counting).
11. How many n letter strings can you form that uses each of the 26 letters of the alphabet at least once?

