List-decoding algorithms for lifted codes

Alan Guo ∗ Swastik Kopparty †

November 26, 2014

Abstract

Lifted Reed-Solomon codes are a natural affine-invariant family of error-correcting codes which generalize Reed-Muller codes. They were known to have efficient local-testing and local-decoding algorithms (comparable to the known algorithms for Reed-Muller codes), but with significantly better rate. We give efficient algorithms for list-decoding and local list-decoding of lifted codes. Our algorithms are based on a new technical lemma, which says that codewords of lifted codes are low degree polynomials when viewed as univariate polynomials over a big field (even though they may be very high degree when viewed as multivariate polynomials over a small field).

1 Introduction

By virtue of their many powerful applications in complexity theory, there has been much interest in the study of error-correcting codes which support “local” operations. The operations of interest include local decoding, local testing, local correcting, and local list-decoding. Error correcting codes equipped with such local algorithms have been useful, for example, in proof-checking, private information retrieval, and hardness amplification.

The canonical example of a code which supports all the above local operations is the Reed-Muller code, which is a code based on evaluations of low-degree polynomials. Reed-Muller codes have nontrivial local algorithms across a wide range of parameters. In this paper, we will be interested in the constant rate regime. For a long time, Reed-Muller codes were the only known codes in this regime supporting nontrivial locality. Concretely, for every constant integer m and every constant $R < \frac{1}{m}$, there are Reed-Muller codes of arbitrarily large length n, rate R, constant relative distance δ, which are locally decodable/testable/correctable from $(\frac{1}{2} - \epsilon) \cdot \delta$ fraction fraction errors using $O(n^{1/m})$ queries. In particular, no nontrivial locality was known for Reed-Muller codes (or any other codes, until recently) with rate $R > 1/2$.

In the last few years, new families of codes were found which had interesting local algorithms in the high rate regime (i.e., with rate R near 1). These codes include multiplicity codes [KSY11, Kop12], lifted codes [GKS13, Guo13], expander codes [HOW13] and tensor codes [Vid10]. Of these, lifted codes are the only ones that are both locally decodable and locally testable. This paper gives new and improved decoding and testing algorithms for lifted codes.

∗CSAIL, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, USA. aguo@mit.edu. Research supported in part by NSF grants CCF-0829672, CCF-1065125, and CCF-6922462, and an NSF Graduate Research Fellowship

†Department of Mathematics & Department of Computer Science, Rutgers University. swastik.kopparty@rutgers.edu. Research supported in part by a Sloan Fellowship and NSF CCF-1253886.
1.1 Lifted Codes and our Main Result

Lifted codes are a natural family of algebraic, affine-invariant codes which generalize Reed-Muller codes. We give a brief introduction to these codes now. Let q be prime power, let $d < q$ and let $m > 1$ be an integer. Define alphabet $\Sigma = \mathbb{F}_q$. We define the lifted code $C = C(q, d, m)$ to be a subset of $\Sigma^{\mathbb{F}_q^m}$, the space of functions from \mathbb{F}_q^m to \mathbb{F}_q. A function $f : \mathbb{F}_q^m \rightarrow \mathbb{F}_q$ is in C if for every line $L \subseteq \mathbb{F}_q^m$, the restriction of f to L is a univariate polynomial of degree at most d. Note that if f is the evaluation table of an m-variate polynomial of degree $\leq d$, then f is automatically in C. The surprising (and useful) fact is that if d is large and \mathbb{F}_q has small characteristic, then C has significantly more functions. This leads to its improved rate relative to the corresponding Reed-Muller code, which only contains the evaluation tables of low degree polynomials.

Our main result is an algorithm for list-decoding and local list-decoding of lifted codes. We show that lifted codes of distance δ can be efficiently list-decoded and locally list-decoded (in sublinear-time) upto their “Johnson radius” $(1 - \sqrt{1 - \delta})$. Combined with the local testability of lifted codes, this also implies that lifted codes can be locally tested in the high-error regime, upto the Johnson radius.

It is well known that Reed-Muller codes can be list decoded and locally list-decoded upto the Johnson radius [PW04, STV99]. Our result shows that a lifted code, which is a natural algebraic supercode of Reed-Muller codes, despite having a vastly greater rate than the corresponding Reed-Muller code, loses absolutely nothing in terms of any (local) algorithmic decoding / testing properties.

In the appendix, we also prove two other results as part of the basic toolkit for working with lifted codes.

- **Explicit interpolating sets**: For a lifted code C, we give a strongly explicit subset S of \mathbb{F}_q^m such that for every $g : S \rightarrow \mathbb{F}_q$, there is a unique lifted codeword $f : \mathbb{F}_q^m \rightarrow \mathbb{F}_q$ from C with $f|_S = g$. The main interest in explicit interpolating sets for us is that it allows us to convert the sublinear-time local correction algorithm for lifted codes into a sublinear-time local decoding algorithm for lifted codes (earlier the known sublinear-time local correction, only implied low-query-complexity local decoding, without any associated sublinear-time local decoding algorithm).

- **Simple local decoding upto half the minimum distance**: We note that there is a simple algorithm for local decoding of lifted codes upto half the minimum distance. This is a direct translation of the elegant lines-weight local decoding algorithm for matching-vector codes [BET10] to the Reed-Muller code / lifted codes setting.

1.2 Methods

We first talk about the (global) list-decoding algorithm. The main technical lemma underlying this algorithm says that codewords of lifted codes are low-degree in a certain sense.

The codewords of a lifted code are in general very high degree as m-variate polynomials over \mathbb{F}_q. There is a description of these codes in terms of spanning monomials [GKS13], but it is not even clear from this description that lifted codes have good distance. The handle that we get on lifted codes arises by considering the big field \mathbb{F}_{q^m}, and letting ϕ be an \mathbb{F}_q-linear isomorphism between \mathbb{F}_{q^m}

1 Technically we are talking about lifted Reed-Solomon codes, but for brevity we refer to them as lifted codes.

2 To locally list-decode all the way upto the Johnson bound, one actually needs a variant of [STV99] given in [BK09].
and F_{q^m}. Given a function $f : F_{q^m} \rightarrow F_q$, we can consider the composed function $f \circ \phi : F_{q^m} \rightarrow F_q$, and view it as a function from $F_{q^m} \rightarrow F_{q^m}$. Our technical lemma says that this function $f \circ \phi$ is low-degree as a univariate polynomial over F_{q^m} (irrespective of the choice of the map ϕ).

Through this lemma, we reduce the problem of list-decoding lifted codes over the small field F_q to the problem of list-decoding univariate polynomials (i.e., Reed-Solomon codes) over the large field F_{q^m}. This latter problem can be solved using the Guruswami-Sudan algorithm [GS99].

Our local list-decoding algorithm uses the above list-decoding algorithm. Following [AS03, STV99, BK09], local list-decoding of m-variate Reed-Muller codes over F_q reduces to (global) list-decoding of t-variate Reed-Muller codes over F_q (for some $t < m$). For the list-decoding radius to approach the Johnson radius, one needs $t \geq 2$. This is where the above list-decoding algorithm gets used.

Organization of this paper Section 2 introduces notation and preliminary definitions and facts to be used in later proofs. Section 3 proves our main technical result, that lifted RS codes over domain F_{q^m} are low degree when viewed as univariate polynomials over F_{q^m}, as well as the consequence for global list decoding. Section 4 presents and analyzes the local list decoding algorithm for lifted RS codes, along with the consequence for local testability. Appendix A describes the explicit interpolating sets for arbitrary lifted affine-invariant codes. Appendix B presents and analyzes the local correction algorithm up to half the minimum distance.

2 Preliminaries

2.1 Notation

For a positive integer n, we use $[n]$ to denote the set $\{1, \ldots, n\}$. For sets A and B, we use $\{A \rightarrow B\}$ to denote the set of functions mapping A to B.

For a prime power q, F_q is the finite field of size q. We think of a code $C \subseteq \{F_Q^n \rightarrow F_q\}$ as a family of functions $f : F_Q^n \rightarrow F_q$, where F_Q is an extension field of F_q, but each codeword is a vector of evaluations $(f(x))_{x \in F_Q}$ assuming some canonical ordering of elements in F_Q; we abuse notation and say $f \in C$ to mean $(f(x))_{x \in F_Q} \in C$.

If $f : F_q^m \rightarrow F_q$ and line ℓ is a line in F_q, this formally means ℓ is specified by some $a, b \in F_q$ and the restriction of f to ℓ, denoted by $f|_{\ell}$, means the function $t \mapsto f(a + bt)$. Similarly, if P is a plane, then it is specified by some $a, b, c \in F_q$ and the restriction of f to P, denoted by $f|_P$, means the function $(t, u) \mapsto f(a + bt + cu)$.

2.2 Interpolating sets and decoding

Definition 2.1 (Interpolating set). A set $S \subseteq F_Q^n$ is an interpolating set for C if for every $\hat{f} : S \rightarrow F_q$ there exists a unique $f \in C$ such that $f|_S = \hat{f}$.

Note that if S is an interpolating set for C, then $|C| = q^{|S|}$.

Definition 2.2 (Local decoding). Let Σ be an alphabet and let $C : \Sigma^k \rightarrow \Sigma^n$ be an encoding map. A (ρ, l)-local decoding algorithm for C is a randomized algorithm $D : [k] \rightarrow \Sigma$ with oracle access to an input word $r \in \Sigma^n$ and satisfies the following:
1. If there is a message \(m \in \Sigma^k \) such that \(\delta(C(m), r) \leq \rho \), then for every input \(i \in [k] \), we have \(\Pr[D^r(i) = m_i] \geq \frac{2}{3} \).

2. On every input \(i \in [k] \), \(D^r(i) \) always makes at most \(l \) queries to \(r \).

We call \(\rho \) the fraction of errors decodable, or the decoding radius, and we call \(l \) the query complexity.

Definition 2.3 (Local correction). Let \(C \subseteq \Sigma^n \) be a code. A \((\rho, l)\)-local correction algorithm for \(C \) is a randomized algorithm \(C : [n] \to \Sigma \) with oracle access to an input word \(r \in \Sigma^n \) and satisfies the following:

1. If there is a codeword \(c \in \Sigma^n \) such that \(\delta(c, r) \leq \rho \), then for every input \(i \in [n] \), we have \(\Pr[C^r(i) = c_i] \geq \frac{2}{3} \).

2. On every input \(i \in [n] \), \(C^r(i) \) always makes at most \(l \) queries to \(r \).

As before, \(\rho \) is the decoding radius and \(l \) is the query complexity.

The definition and construction of interpolating sets is motivated by the fact that if we have an explicit interpolating set for a code \(C \), then we have an explicit systematic encoding for \(C \), which allows us to easily transform a local correction algorithm into a local decoding algorithm.

Definition 2.4 (List decoding). Let \(C \subseteq \Sigma^n \) be a code. A \((\rho, L)\)-list decoding algorithm for \(C \) is an algorithm which takes as input a received word \(r \in \Sigma^n \) and outputs a list \(\mathcal{L} \subseteq \Sigma^n \) of size \(|\mathcal{L}| \leq L \) containing all \(c \in C \) such that \(\delta(c, r) \leq \rho \). The parameter \(\rho \) is the list-decoding radius and \(L \) is the list size.

Definition 2.5 (Local list decoding). Let \(C \subseteq \Sigma^n \) be a code. A \((\rho, L, l)\)-local list decoding algorithm for \(C \) is a randomized algorithm \(A \) with oracle access to an input word \(r \in \Sigma^n \) and outputs a collection of randomized oracles \(A_1, \ldots, A_L \) with oracle access to \(r \) satisfying the following:

1. With high probability, it holds that for every \(c \in C \) such that \(\delta(c, r) \leq \rho \), there exists a \(j \in [L] \) such that for every \(i \in [n] \), \(\Pr[A^r_j(i) = c_i] \geq \frac{2}{3} \).

2. \(A \) makes at most \(l \) queries to \(r \), and on any input \(i \in [n] \) and for every \(j \in [L] \), \(A^r_j \) makes at most \(l \) queries to \(r \).

As before, \(\rho \) is the list decoding radius, \(L \) is the list size, and \(l \) is the query complexity.

2.3 Affine-invariant codes

Definition 2.6 (Affine-invariant code). A code \(C \subseteq \{F_Q^n \to F_q \} \) is affine-invariant if for every \(f \in C \) and affine permutation \(A : F_Q^n \to F_Q^n \), the function \(x \mapsto f(A(x)) \) is in \(C \).

Definition 2.7 (Degree set). For a function \(f : F_Q \to F_q \), written as \(f = \sum_{d=0}^{Q-1} f_d X^d \), its support is \(\text{supp}(f) := \{d \in \{0, \ldots, Q-1\} \mid f_d \neq 0\} \). If \(C \subseteq \{F_Q \to F_q \} \) is an affine-invariant code, then its degree set \(\deg(C) \) is

\[
\deg(C) := \bigcup_{f \in C} \text{supp}(f).
\]

Proposition 2.8 ([BGM+11]). If \(C \subseteq \{F_q^m \to F_q \} \) is an affine-invariant code, then \(\dim_{F_q}(C) = |\deg(C)| \).

In particular, if \(S \) is an interpolating set for an affine-invariant code \(C \subseteq \{F_q^m \to F_q \} \), then \(|S| = |\deg(C)| \). Proposition 2.8 will be used in Appendix A.
2.4 Lifted codes

Definition 2.9 (Lift). Let $\mathcal{C} \subseteq \{F_q \rightarrow F_q\}$ be an affine-invariant code. For integer $m \geq 2$, the m-th dimensional lift of \mathcal{C}, $\text{Lift}_m(\mathcal{C})$, is the code

$$\text{Lift}_m(\mathcal{C}) := \{f : F_q^m \rightarrow F_q \mid f|_{\ell} \in \mathcal{C} \text{ for every } \ell \in F_q^m\}$$

Let $\text{RS}(q,d)$ be the Reed-Solomon code of degree d over F_q,

$$\text{RS}(q,d) := \{f : F_q \rightarrow F_q \mid \deg(f) \leq d\}.$$

Definition 2.10 (Lifted Reed-Solomon code). The m-variate lifted Reed-Solomon code of degree d over F_q is the code

$$\text{LiftedRS}(q,d,m) := \text{Lift}_m(\text{RS}(q,d)).$$

For positive integers d,e, we say e is the p-shadow of d, or $e \leq_p d$, if d dominates e digit-wise in base p: in other words, if $d = \sum_{i \geq 0} d(i)p^i$ and $e = \sum_{i \geq 0} e(i)p^i$ are the p-ary representations, then $e(i) \leq d(i)$ for all $i \geq 0$. A vector (e_1, \ldots, e_m) lies in the p-shadow of d if for every (f_1, \ldots, f_m) such that $f_i \leq_p e_i$ for $i \in [m]$, it holds that $\sum_{i=1}^m f_i \leq d$. The following fact motivates these definitions.

Proposition 2.11 (Lucas’ theorem). Let e_1, \ldots, e_m be positive integers and $d = e_1 + \cdots + e_m$ and let p be a prime. The multinomial coefficient $\binom{d}{e_1, \ldots, e_m} = \frac{d!}{e_1! \cdots e_m!}$ is nonzero modulo p only if $(e_1, \ldots, e_m) \leq_p d$.

For positive integers a and b, we define the mod-star operator by

$$a (\text{mod}^* b) = \begin{cases} a \quad &a \leq b \\ a \mod b &a > b \end{cases}$$

motivated by the fact that X^d defines the same function as $X^d (\text{mod}^* q - 1)$ over F_q.

Proposition 2.12 ([GKS13]). The lifted Reed-Solomon code $\text{LiftedRS}(q,d,m)$ is spanned by monomials $\prod_{i=1}^m X_i^{d_i}$ such that for every $e_i \leq_p d_i$, $i \in [m]$, we have $\sum_{i=1}^m e_i (\text{mod}^* q - 1) \leq d$.

2.5 Finite field isomorphisms

Let $\text{Tr} : F_q^m \rightarrow F_q$ be the F_q-linear trace map $z \mapsto \sum_{i=0}^{q-1} z^i$. Let $\alpha_1, \ldots, \alpha_m \in F_q^m$ be linearly independent over F_q and let $\phi : F_q^m \rightarrow F_q^m$ be the map $z \mapsto (\text{Tr}(\alpha_1 z), \ldots, \text{Tr}(\alpha_m z))$. Since Tr is F_q-linear, ϕ is an F_q-linear map and in fact it is an isomorphism. Observe that ϕ induces a F_q-linear isomorphism $\phi^* : \{F_q^m \rightarrow F_q\} \rightarrow \{F_q^m \rightarrow F_q\}$ defined by $\phi^*(f)(x) = f(\phi(x))$ for all $x \in F_q^m$.

3 Global list decoding

In this section, we present an efficient global list decoding algorithm for $\text{LiftedRS}(q,d,m)$. Define $\alpha_1, \ldots, \alpha_m \in F_q^m$, ϕ, and ϕ^* as in Section 2.5. Our main result states that $\text{LiftedRS}(q,d,m) \subseteq \{F_q^m \rightarrow F_q\}$ is isomorphic to a subcode of $\text{RS}(q^m, (d + m)q^{m-1}) \subseteq \{F_q^m \rightarrow F_q\}$. In particular, one can simply list decode $\text{LiftedRS}(q,d,m)$ by list decoding $\text{RS}(q^m, (d + m)q)$ up to the Johnson radius. We will use this algorithm for $m = 2$ as a subroutine in our local list decoding algorithm in Section 4.
Theorem 3.1. If \(f \in \text{LiftedRS}(q,d,m) \), then \(\deg(\phi^*(f)) \leq (d+m)q^{m-1} \).

Proof. By linearity, it suffices to prove this for a monomial \(f(X_1, \ldots, X_m) = \prod_{i=1}^{m} X_i^{d_i} \). We have

\[
\phi^*(f)(Z) = \sum_{(e_1, \ldots, e_m) \leq \rho d_1} \cdots \sum_{(e_m, \ldots, e_m) \leq \rho d_m} (\cdots) Z^\sum_{i,j} e_{ij} q^{m-i},
\]

so it suffices to show that \(\sum_{j=1}^{m} \sum_{i=1}^{m} e_{ij} q^{m-j} \mod q^m - 1 \leq (d+m)q^{m-1} \). By Proposition 2.12, for every \(e_i \leq d_i \), \(i \in [m] \), we have \(\sum_{i=1}^{m} e_i (\mod^* q - 1) \leq d \). Therefore, there is some integer \(0 \leq k < m \) such that \(\sum_{i=1}^{m} e_i \in [kq, k(q - 1) + d] \). Thus,

\[
kq^m \leq q^{m-1} \sum_{i=1}^{m} e_{i1} + \sum_{j=2}^{m} \sum_{i=1}^{m} e_{ij} q^{m-j}
\]

\[
\leq q^{m-1} \sum_{i=1}^{m} e_{i1} + q^{m-2} \sum_{j=2}^{m} \sum_{i=1}^{m} e_{ij}
\]

\[
\leq (k(q - 1) + d)q^{m-1} + mq^{m-1}
\]

\[
= k(q^m - 1) + (d + m - k)q^{m-1} + k
\]

\[
\leq k(q^m - 1) + (d + m)q^{m-1}
\]

and hence \(\sum_{j=1}^{m} \sum_{i=1}^{m} e_{ij} q^{m-j} \mod^* q^m - 1 \leq (d+m)q^{m-1} \).

Corollary 3.2. There is a polynomial time global list decoding algorithm for \(\text{LiftedRS}(q,d,m) \) that decodes up to \(1 - \sqrt{\frac{d+m}{q}} \) fraction errors. In particular, if \(m = O(1) \) and \(d = (1-\delta)q \), then \(\delta(\text{LiftedRS}(q,d,m)) = \delta - o(1) \) and the list decoding algorithm decodes up to \(1 - \sqrt{1-\delta} - o(1) \) fraction errors as \(q \rightarrow \infty \).

Proof. Given \(r : \mathbb{F}_q^m \rightarrow \mathbb{F}_q \), convert it to \(r' = \phi^*(r) \), and then run the Guruswami-Sudan list decoder for \(\text{RS} := \text{RS}(q^m, (d+m)q^{m-1}, m) \) on \(r' \) to obtain a list \(\mathcal{L} \) with the guarantee that any \(f \in \text{RS} \) with \(\delta(r', f) \leq 1 - \sqrt{\frac{d+m}{q}} \) lies in \(\mathcal{L} \). We require that any \(f \in \text{LiftedRS}(q,d,m) \) satisfying \(\delta(r', f) \leq 1 - \sqrt{\frac{d+m}{q}} \) lies in \(\mathcal{L} \), and this follows immediately from Theorem 3.1.

4 Local list decoding

In this section, we present a local list decoding algorithm for \(\text{LiftedRS}(q,d,m) \), where \(d = (1-\delta)q \) which decodes up to radius \(1 - \sqrt{1-\delta} - \epsilon \) for any constant \(\epsilon > 0 \), with list size \(\text{poly}(\frac{1}{\epsilon}) \) and query complexity \(q^3 \).

Local list decoder: Oracle access to received word \(r : \mathbb{F}_q^m \rightarrow \mathbb{F}_q \).

1. Pick a random line \(\ell \) in \(\mathbb{F}_q^m \).

2. Run Reed-Solomon list decoder (e.g. Guruswami-Sudan) on \(r|_\ell \) from \(1 - \sqrt{1-\delta} - \frac{\epsilon}{2} \) fraction errors to get list \(g_1, \ldots, g_L : \mathbb{F}_q \rightarrow \mathbb{F}_q \) of Reed-Solomon codewords.
3. For each $i \in [L]$, output $\text{Correct}(A_{\ell,g_i})$

where Correct is a local correction algorithm for the lifted codes for 0.1δ fraction errors, and A is an oracle which takes as advice a line and a univariate polynomial and simulates oracle access to a function which is supposed to be $\ll 0.1\delta$ close to a lifted RS codeword.

Oracle $A_{\ell,g}(x)$:

1. If ℓ contains x, i.e. $\ell = \{a + bt \mid t \in \mathbb{F}_q\}$ for some $a, b \in \mathbb{F}^m_q$ and $x = at + b$, then output $g(t)$.
2. Otherwise, let P be the plane containing ℓ and x, parametrized by $\{a + bt + (x-a)u \mid t, u \in \mathbb{F}_q\}$.

 (a) Use the global list decoder for bivariate lifted RS code given above to list decode $r|_P$ from $1 - \sqrt{1-\delta - \frac{2}{q}}$ fraction errors and obtain a list L.

 (b) If there exists a unique $h \in L$ such that $h|_\ell = g$, output $h(0,1)$, otherwise fail.

Analysis: To show that this works, we just have to show that, with high probability over the choice of ℓ, for every lifted RS codeword f such that $\delta(r,f) \leq 1 - \sqrt{1-\delta - \epsilon}$, there is $i \in [L]$ such that $\text{Correct}(A_{\ell,g_i}) = f$, i.e. $\delta(A_{\ell,g_i}, f) \leq 0.1\delta$.

We will proceed in two steps:

1. First, we show that with high probability over ℓ, there is some $i \in [L]$ such that $f|_\ell = g_i$.
2. Next, we show that $\delta(A_{\ell,f|_\ell}, f) \leq 0.1\delta$.

For the first step, note that $f|_\ell \in \{g_1, \ldots, g_L\}$ if $\delta(f|_\ell, r|_\ell) \leq 1 - \sqrt{1-\delta - \frac{2}{q}}$. Note that $\delta(f|_\ell, r|_\ell)$ has mean $1 - \sqrt{1-\delta - \epsilon}$ with variance less than $\frac{1}{q}$ (by pairwise independence of points on a line), so by Chebyshev’s inequality the probability that $\delta(f|_\ell, r|_\ell) \leq 1 - \sqrt{1-\delta - \frac{2}{q}}$ is $1 - o(1)$.

For the second step, we want to show that $\Pr_{x \in \mathbb{F}^m_q}[A_{\ell,f|_\ell}(x) \neq f(x)] \leq 0.1\delta$. First consider the probability when we randomize ℓ as well. We get $A_{\ell,f|_\ell}(x) = f(x)$ as long as $f|_P \in L$ and no element $h \in L$ has $h|_\ell = f|_\ell$. With probability $1 - o(1)$, ℓ does no contain x, and conditioned on this, P is a uniformly random plane. It samples the space \mathbb{F}^m_q well, so with probability $1 - o(1)$ we have $\delta(f|_P, r|_P) \leq 1 - \sqrt{1-\delta - \frac{2}{q}}$ and hence $f|_P \in L$. For the probability that no two codewords in L agree on ℓ, view this as first choosing P, then choosing ℓ within P. The list size $|L|$ is a constant, polynomial in $1/\epsilon$. So we just need to bound the probability that two bivariate lifted RS codewords agree on a uniformly random line. This is at most $2/q$, since each line must divide the difference of two codewords, which has degree at most $2q$. Thus, with probability $1 - o(1)$, $f|_P$ is the unique codeword in L which is consistent with $f|_\ell$ on ℓ. Therefore,

$$\Pr_\ell[\delta(A_{\ell,f|_\ell}, f|_\ell) > 0.1\delta] = \Pr_\ell[\Pr_x[A_{\ell,f|_\ell}(x) \neq f(x)] > 0.1\delta]$$

$$\leq \frac{\Pr_{\ell,x}[A_{\ell,f|_\ell}(x) \neq f(x)]}{0.1\delta} = o(1).$$

As a corollary, we get the following testing algorithm.
Theorem 4.1. For any $\alpha < \beta < 1 - \sqrt{1 - \delta}$, there is an $O(q^4)$-query algorithm which, given oracle access to a function $r : \mathbb{F}_q^m \to \mathbb{F}_q$, distinguishes between the cases where r is α-close to LiftedRS(d,m) and where r is β-far.

Proof. Let $\rho = (\alpha + \beta)/2$ and let $\epsilon = (\beta - \alpha)/8$, so that $\alpha = \rho - 4\epsilon$ and $\beta = \rho + 4\epsilon$. Let T be a local testing algorithm for LiftedRS(q,d,m) with query complexity q, which distinguishes between codewords and words that are ϵ-far from the code. The algorithm is to run the local list decoding algorithm on r with error radius ρ such that $\alpha < \rho < \beta$, to obtain a list of oracles M_1, \ldots, M_L. For each M_i, we use random sampling to estimate the distance between r and the function computed by M_i to within ϵ additive error, and keep only the ones with estimated distance less than $\rho + \epsilon$. Then, for each remaining M_i, we run T on M_i. We accept if T accepts some M_i, otherwise we reject.

If r is α-close to LiftedRS(q,d,m), then it is α-close to some codeword f, and by the guarantee of the local list decoding algorithm there is some $j \in [l]$ such that M_j computes f. Moreover, this M_j will not be pruned by our distance estimation. Since f is a codeword, this M_j will pass the testing algorithm and so our algorithm will accept.

Now suppose r is β-far from LiftedRS(q,d,m), and consider any oracle M_i output by the local list decoding algorithm and pruned by our distance estimation. The estimated distance between r and the function computed by M_i is at most $\rho + \epsilon$, so the true distance is at most $\rho + 2\epsilon$. Since r is β-far from any codeword, that means the function computed by M_i is $(\beta - (\rho + 2\epsilon)) > \epsilon$-far from any codeword, and hence T will reject M_i.

All of the statements made above were deterministic, but the testing algorithm T and distance estimation are randomized procedures. However, at a price of constant blowup in query complexity, we can make their failure probabilities arbitrarily small constants, so that by a union bound the distance estimations and tests run by T simultaneously succeed with large constant probability. \qed

References

By linearity, it suffices to show that if so suppose $\text{Deg}(C)_{\overrightarrow{F}}$ suffices to show that S. Proof. The map ϕ induces a map $\phi^*: \{\mathbb{F}_q^m \rightarrow \mathbb{F}_q\} \rightarrow \{\mathbb{F}_q^m \rightarrow \mathbb{F}_q\}$ defined by $\phi^*(f) = f \circ \phi$. It suffices to show that S is an interpolating set for $C' \triangleq \phi^*(C)$. Observe that C' is affine-invariant over \mathbb{F}_q^m, and let $\text{Deg}(C') = \{i \mid \exists f \in C \ i \in \text{supp}(f)\}$. By Proposition 2.8, $\dim_{\mathbb{F}_q}(C') = |\text{Deg}(C')|$, so suppose $\text{Deg}(C') = \{i_1, \ldots, i_D\}$. Every $g \in C'$ is of the form $g(z) = \sum_{j=1}^D a_j z^{i_j}$, where $a_j \in \mathbb{F}_q^m$. By linearity, it suffices to show that if $g \in C'$ is nonzero, then $g(z) \neq 0$ for some $z \in S$. We have

$$\begin{bmatrix}
\omega^{i_1} & \omega^{i_2} & \cdots & \omega^{i_D} \\
\omega^{2i_1} & \omega^{2i_2} & \cdots & \omega^{2i_D} \\
\vdots & \vdots & \ddots & \vdots \\
\omega^{Di_1} & \omega^{Di_2} & \cdots & \omega^{Di_D}
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_D
\end{bmatrix}
=
\begin{bmatrix}
g(\omega) \\
g(\omega^2) \\
\vdots \\
g(\omega^D)
\end{bmatrix}$$

and the leftmost matrix is invertible since it’s a generalized Vandermonde matrix. Therefore, if $g \neq 0$, then the right-hand side, which is simply the vector of evaluations of g on S, is nonzero. \hfill \square
Local unique decoding upto half minimum distance

Theorem B.1. Let $C \subseteq \{\mathbb{F}_q \to \mathbb{F}_q\}$ be an affine-invariant code of distance δ. For every positive integer $m \geq 2$ and for every $\epsilon > 0$, there exists a local correction algorithm for $\text{Lift}_m(C)$ with query complexity $O(q/\epsilon^2)$ that corrects up to $(\frac{1}{2} - \epsilon) \delta - \frac{1}{q}$ fraction errors.

Proof. Let Corr_C be a correction algorithm for C, so that for every $f : \mathbb{F}_q \to \mathbb{F}_q$ that is $\delta/2$-close to some $g \in C$, $\text{Corr}_C(f) = g$. The following algorithm is a local correction algorithm that achieves the desired parameters.

Local correction algorithm: Oracle access to received word $r : \mathbb{F}_q^m \to \mathbb{F}_q$.

1. Let $c = \lceil \frac{4\ln 6}{e^2} \rceil$ and pick $a_1, \ldots, a_c \in \mathbb{F}_q^m$ independent and uniformly at random.

2. For each $i \in [c]$:

 (a) Set $r_i(t) := r(x + a_i t)$.

 (b) Compute $s_i := \text{Corr}_C(r_i)$ and $\delta_i := \delta(r_i, s_i)$.

 (c) Assign the value $s_i(0)$ a weight $W_i := \max \left(1 - \frac{\delta_i}{\delta/2}, 0\right)$.

3. Set $W := \sum_{i=1}^c W_i$. For every $\alpha \in \mathbb{F}_q$, let $w(\alpha) := \frac{1}{W} \sum_{i : s_i(0) = \alpha} W_i$. If there is an $\alpha \in \mathbb{F}_q$ with $w(\alpha) > \frac{1}{2}$, output α, otherwise fail.

Analysis: Fix a received word $r : \mathbb{F}_q^m \to \mathbb{F}_q$ that is $(\tau - \frac{1}{q})$-close from a codeword $c \in \text{Lift}_m(C)$, where $\tau = (\frac{1}{2} - \epsilon) \delta$. The query complexity follows from the fact that the algorithm queries $O(1/\epsilon^2)$ lines, each consisting of q points. Fix an input $x \in \mathbb{F}_q^m$. We wish to show that, with probability at least $2/3$, the algorithm outputs $c(x)$, i.e. $w(c(x)) > \frac{1}{2}$.

Consider all lines ℓ passing through x. For each such line ℓ, define the following:

- $\tau_\ell := \delta(r|_\ell, c|_\ell)$
- $s_\ell := \text{Corr}_C(r|_\ell)$
- $\delta_\ell := \delta(r|_\ell, s_\ell)$
- $W_\ell := \max \left(1 - \frac{\delta_\ell}{\delta/2}, 0\right)$
- $X_\ell = \begin{cases} W_\ell & s_\ell = c|_\ell \\ 0 & s_\ell \neq c|_\ell. \end{cases}$

Let $p := \Pr[\ell | s_\ell = c|_\ell]$. Note that if $s_\ell = c_\ell$, then $\delta_\ell = \tau_\ell$, otherwise $\delta_\ell \geq \delta - \tau_\ell$. Hence, if $s_\ell = c_\ell$, then $W_\ell \geq 1 - \frac{\tau_\ell}{\delta/2}$, otherwise $W_\ell \leq \frac{\tau_\ell}{\delta/2} - 1$.

\textcopyright 2023
Define
\[
\begin{align*}
\tau_{\text{good}} &= \mathbb{E}[\tau_{\ell} \mid s_{\ell} = c|]\ell \\
\tau_{\text{bad}} &= \mathbb{E}[\tau_{\ell} \mid s_{\ell} \neq c|]\ell \\
W_{\text{good}} &= \mathbb{E}[W_{\ell} \mid s_{\ell} = c|]\ell \\
W_{\text{bad}} &= \mathbb{E}[W_{\ell} \mid s_{\ell} \neq c|]\ell
\end{align*}
\]

Observe that
\[
\begin{align*}
\mathbb{E}[\tau_{\ell}] &\leq \frac{1 + (\tau - \frac{1}{q})(q - 1)}{q} \leq \tau \\
\mathbb{E}[X_{\ell}] &= p \cdot W_{\text{good}} \\
\mathbb{E}[W_{\ell}] &= p \cdot W_{\text{good}} + (1 - p) \cdot W_{\text{bad}}.
\end{align*}
\]

We claim that
\[
p \cdot W_{\text{good}} \geq (1 - p) \cdot W_{\text{bad}} + 2\epsilon. \quad (6)
\]
To see this, we start from
\[
\left(\frac{1}{2} - \epsilon\right) \delta = \tau \geq \mathbb{E}[\tau_{\ell}] = p \cdot \tau_{\text{good}} + (1 - p) \cdot \tau_{\text{bad}}.
\]
Dividing by \(\delta/2\) yields
\[
1 - 2\epsilon \geq p \cdot \frac{\tau_{\text{good}}}{\delta/2} + (1 - p) \cdot \frac{\tau_{\text{bad}}}{\delta/2}.
\]
Re-writing \(1 - 2\epsilon\) on the left-hand side as \(p + (1 - p) - 2\epsilon\) and re-arranging, we get
\[
p \cdot \left(1 - \frac{\tau_{\text{good}}}{\delta/2}\right) \geq (1 - p) \cdot \left(\frac{\tau_{\text{bad}}}{\delta/2} - 1\right) + 2\epsilon.
\]
The left-hand side is bounded from above by \(p \cdot W_{\text{good}}\) while the right-hand side is bounded from below by \((1 - p) \cdot W_{\text{bad}} + 2\epsilon\), hence (6) follows.

For each \(i \in [c]\), let \(\ell_{i}\) be the line \(\{x + a_{i}t \mid t \in \mathbb{F}_{q}\}\). Note that the \(X_{\ell}\) are defined such that line \(i\) contributes weight \(X_{\ell_{i}}/W\) to \(w(c(x))\), so it suffices to show that, with probability at least 2/3,
\[
\frac{\sum_{i=1}^{c} X_{\ell_{i}}}{\sum_{i=1}^{c} W_{\ell_{i}}} > \frac{1}{2}.
\]
Each \(X_{\ell}, W_{\ell} \in [0, 1]\), so by Hoeffding’s inequality,
\[
\begin{align*}
\Pr\left[\frac{1}{c} \sum_{i=1}^{c} X_{\ell_{i}} - \mathbb{E}[X_{\ell}] > \epsilon/2\right] &\leq \exp(-\epsilon^2c/4) \leq 1/6 \\
\Pr\left[\frac{1}{c} \sum_{i=1}^{c} W_{\ell_{i}} - \mathbb{E}[W_{\ell}] > \epsilon/2\right] &\leq \exp(-\epsilon^2c/4) \leq 1/6.
\end{align*}
\]
Therefore, by a union bound, with probability at least $2/3$ we have, after applying (6),

$$\frac{\sum_{i=1}^{c} X_i}{\sum_{i=1}^{c} W_i} \geq \frac{\mathbb{E}[X_\ell] - \alpha}{\mathbb{E}[W_\ell] + \epsilon/2}$$

$$\geq \frac{p \cdot W_{\text{good}} - \alpha}{p \cdot W_{\text{good}} + (1 - p) \cdot W_{\text{bad}} + \epsilon/2}$$

$$\geq \frac{(1 - p) \cdot W_{\text{bad}} + 3\epsilon/2}{2(1 - p) \cdot W_{\text{bad}} + 5\epsilon/2}$$

$$> \frac{1}{2}. \quad \Box$$