Publications of Eugene R. Speer X

71. J. L. Lebowitz, B. Pittel, D. Ruelle, and E. R. Speer, Central limit theorems, Lee-Yang zeros, and graph-counting polynomials. arXiv:1408.4153 [math.CO].

70. O. Costin, J. L. Lebowitz, E. R. Speer, and A. Troiani, The blockage problem. Bull. Inst. Math. Acad. Sin. N. S., 8, 49--72 (2013); arXiv:1207.6555 [cond-mat.stat-mech].

69. J. L. Lebowitz, D. Ruelle, and E. R. Speer, Location of the Lee-Yang zeros and absence of phase transitions in some Ising spin systems. J. Math. Phys. 53, 095211 (2012), 13 pages; arXiv:1204.0558 [cond-mat.stat-mech].

68. A. Ayyer, J. L. Lebowitz, and E. R. Speer, On Some Classes of Open Two-Species Exclusion Processes. Markov Processes Relat Fields 18, 157176 (2012); arXiv:1008.4721 [cond-mat.stat-mech].

67. J. Barton, J. L. Lebowitz, and E. R. Speer, Phase diagram of a generalized ABC model on the interval. J. Stat. Phys. 145 (2011), 763–784. arXiv:1106.1942 [cond-mat.stat-mech].

66. J. Barton, J. L. Lebowitz, and E. R. Speer, The grand canonical ABC model: a reflection asymmetric mean field Potts model. J. Phys. A: Math. Theor. 44 (2011) 065005, arXiv:1010.1180 [cond-mat.stat-mech].

65. T. Kuna, J. L. Lebowitz and E. R. Speer, Necessary and sufficient conditions for realizability of point processes. Ann. Appl. Probab. 21 (2011), 1253–1281. arXiv:0910.1710v1 [math.PR]

64. A. Ayyer, E. Carlen, J. L. Lebowitz, D. Mukamel, P. K. Mohanty, and E. Speer, Phase diagram of the ABC model on an interval. J. Stat. Phys. 137 (2009), 1166–1204. arXiv:00905.4849 [cond-mat.stat-mech].

63. A. Ayyer, J. L. Lebowitz, and E. R. Speer, On the two species asymmetric exclusion process with semi-permeable boundaries. J. Stat. Phys. 135 (2009), 1009–1037. arXiv:0807.2423 [cond-mat.stat-mech].

62. P. S. Landweber and E. R. Speer, On D. Hägele's approach to the Bessis-Moussa-Villani conjecture. Linear Algebra App. 431 (2009), 1317–1324. arXiv:0711.0672 [math.OA].

61. T. Kuna, J. L. Lebowitz and E. R. Speer, Realizability of point processes. J. Stat. Phys. 129, (2007) 417-440. arXiv:math-ph/0612075v2

60. B. Derrida, J. L. Lebowitz, and E. R. Speer, Entropy of open lattice systems. J. Stat. Phys. 126, (2007) 1083-1108, arXiv:0704.3742.

59. E. Caglioti, T. Kuna, J. L. Lebowitz and E. Speer, Point processes with specified low order correlations. Markov Processes Relat. Fields 12, (2006) 257-272.

58. S. Goldstein, J. L. Lebowitz and E. Speer, Large deviations for a point process of bounded variability. Markov Processes Relat. Fields 12 (2006) 235-256.

57. T. Kuna, J. L. Lebowitz, and E. Speer, On the realizability of point processes with specified one and two particle densities. C. Landim, S. Olla, and H. Spohn, Math. Forsch. Oberwolfach 43, Large Scale Stochastic Dynamics (2004).

56. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process. J. Stat. Phys. 110 (2003), 775-810.

55. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact free energy functional for a driven diffusive open stationary nonequilibrium system. Phys. Rev. Lett. 89 (2002), 030601.

54. B. Derrida, J. L. Lebowitz, and E. R. Speer, Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107, (2002) 599-634.

53. P. A. Ferrari, J. L. Lebowitz, and E. R. Speer, Blocking measures for asymmetric exclusion processes via coupling. Bernoulli 7 (2001), 935-950.

52. B. Derrida, J. L. Lebowitz, and E. R. Speer, Free energy functional for nonequilibrium systems: an exactly solvable case. Phys. Rev. Lett. 87, 150601 (2001).

51. N. Rajewsky, T. Sasamoto, and E. R. Speer, Approximate phase transition in the grand canonical ensemble for an exclusion process on a ring. Physica A 279 (2000), 123-142.

50. M. R. Evans, N. Rajewsky, and E. R. Speer, Exact solution of a cellular automaton for traffic. J. Stat. Phys. 45 (1999), 45-96.

49. William Duke, Stephen J. Greenfield, and Eugene R. Speer, Properties of a quadratic Fibonacci recurrence. J. Int. Seq. 1 (1998), 98.1.8.

48. Stephen Bigelis, Emilio N. M. Cirillo, Joel L. Lebowitz, and Eugene R. Speer, Critical droplets in Metastable States of Probabilistic Cellular Automata. Phys. Rev. E 59 (1999), 3935-3941.

47. S. Goldstein and E. R. Speer, Reflection Invariance of the Current in the Totally Asymmetric Simple Exclusion Process with Disorder. Phys. Rev. E 58 (1998), 4226-4228.

46. B. Derrida, S. Goldstein, J. L. Lebowitz, and E. R. Speer, Shift Equivalence of Measures and the Intrinsic Structure of Shocks in the Asymmetric Simple Exclusion Process. J. Stat. Phys. 93 (1998), 547-571.

45. E. R. Speer, Finite dimensional representations of a shock algebra. J. Stat. Phys. 89 (1997), 169-175.

44. B. Derrida, J. L. Lebowitz, and E. R. Speer, Shock profiles for the asymmetric simple exclusion process in one dimension. J. Stat. Phys. 89 (1997), 135-167.

43. F. M. Dekking and E. R. Speer, On the shape of the wavefront of branching random walk. K. B. Athreya and P. Jagers, Classical and Modern Branching Processes, IMA Volumes in Mathematics and its Appications, Volume 84, Springer-Verlag (1996).

42. S. Balakrishna, G. T. Barkema, J. L. Lebowitz, and E. R. Speer, Numerical study of a non-equilibrium interface model. J. Phys. A. 29 (1996), 7475-7484.

41. C. Godrèche, J. M. Luck, M. R. Evans, D. Mukamel, S. Sandow, E. R. Speer, Spontaneous symmetry breaking: exact results for a biased random walk model of an exclusion process. J. Phys. A 28 (1995), 6039.

40. Eugene R. Speer, Conservation laws in a directed sandpile model. Lett. Math. Phys. 33 (1995), 255-262.

39. Eugene R. Speer, The totally asymmetric simple exclusion process. M. Fannes, C. Maes, and A. Verbeure, On Three Levels: Micro-, Meso-, and Macro-Approaches in Physics, Plenum, New York, 1994.

38. B. Derrida, S. A. Janowsky, J. L. Lebowitz and E. R. Speer, Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys. 73 (1993), 813-842.

37. B. Derrida, S. A. Janowsky, J. L. Lebowitz and E. R. Speer, Microscopic shock profiles: exact solution of a nonequilibrium system. Europhys. Letters 22 (1993),651-656.

36. Eugene R. Speer, Asymmetric Abelian sandpile models. J. Stat. Phys. 71 (1993), 61-74. Preprint.

35. B. Derrida, M. Evans and E. R. Speer, Mean field theory of directed polymers with random complex weights. Commun. Math. Phys. 156 (1993) 221-244.

34. P. Bleher, J. L. Lebowitz, and E. R. Speer, Existence and positivity of solutions of a fourth order nonlinear PDE describing interface fluctuations. Commun. Pure and Applied Math. 47 (1994) 923-942.

33. B. Derrida, J. L. Lebowitz, E. R. Speer and H. Spohn, Dynamics of an anchored Toom interface. J. Phys. A 24 (1991) 4805-4834.

32. B. Derrida, J. L. Lebowitz, E. R. Speer and H. Spohn, Fluctuations of a stationary nonequilibrium interface. Phys. Rev. Lett. 67 (1991), 165-168.

31. S. Goldstein, K. Kelly and E.R. Speer, The fractal structure of rarified sums of the Thue-Morse sequence. J. Num. Theor. 42 (1991), 1-19.

30. J.L. Lebowitz, Z. Cheng and E. R. Speer, Microscopic shock structure in model particle systems: the Boghosian-Levermore cellular automaton revisited. Comm. Pure and Applied Math. 44 (1991), 971-979.

29. J. L. Lebowitz, C. Maes and E. R. Speer, Probabilistic cellular automata: some statistical mechanical considerations.. Erica Jen, 1989 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity, Addison Wesley (1990).

28. J. L. Lebowitz, C. Maes and E. R. Speer, Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59 (1990), 117-168.

27. J. L. Lebowitz, H. A. Rose, and E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation II: Mean field approximation. J. Stat. Phys. 54 (1989), 17-56.

26. J. L. Lebowitz, H. A. Rose, and E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50 (1988), 657-687.

25. Eugene R. Speer, Mayer coefficients in two dimensional Coulomb systems. J. Stat. Phys. 42 (1986), 895-920.

24. Eugene R. Speer, Failure of reflection positivity in the quantum Heisenberg ferromagnet. Lett. Math. Phys. 10 (1985), 41-47.

23. J. Farmer, S. Goldstein, and E. R. Speer, Invariant states of a thermally conducting barrier. J. Stat. Phys. 34 (1984), 263-277.

22. P. Hell and E. R. Speer, Matroids with weighed bases and Feynman integrals. M. Rosenfeld and J. Zaks, Convexity and Graph Theory (Annals of Discrete Mathematics 20), North Holland, New York, 1984. Preprint.

21. Eugene R. Speer, Appendix to: Jean Bricmont and Jean-Raymond Fontaine, Perturbation about the mean field critical point. Commun. Math. Phys. 86 (1982), 337-362.

20. V. Rivasseau and E. R. Speer, The Borel transform in Euclidean φ4ν: Local existence for Re ν < 4. Commun. Math. Phys. 72 (1980), 293-302.

19. John H. Lowenstein and Eugene R. Speer, Conservation of local currents in the quantum chiral model. Nuclear Physics B158 (1979), 397-409.

18. J.H. Lowenstein and Eugene R. Speer, Existence of conserved currents in the perturbative sine-Gordon and massive Thirring models. Commun. Math. Phys. 63 (1978), 97-112.

17. John H. Lowenstein and Eugene R. Speer, Light cone finite normal products. J. Math. Phys. 19 (1978), 1859-1865.

16. Eugene R. Speer, Contraction anomalies in dimensional renormalization. Nuclear Physics B134 (1978), 175-188.

15. Eugene R. Speer, Mass singularities of generic Feynman amplitudes. Ann. Inst. H. Poincaré 26A (1977), 87-105.

14. Eugene R. Speer, Dimensional and analytic renormalization. Renormalization Theory, ed. G. Velo and A.S. Wightman, D. Reidel, Dordrecht, 1976.

13. John H. Lowenstein and Eugene R. Speer, Distributional limits of renormalized Feynman amplitudes with zero-mass denominators. Commun. Math. Phys. 47 (1976), 43-51.

12. Eugene R. Speer, Analytic renormalization using many space-time dimensions. Commun. Math. Phys. 37 (1974), 83-92.

11. Eugene R. Speer, Ultraviolet and infrared singularity structure of generic Feynman amplitudes. Ann. Inst. H. Poincaré 23A (1975), 1-21.

10. Eugene R. Speer, The convergence of BPH renormalization. Commun. Math. Phys. 35 (1974), 151-154.

9. Eugene R. Speer, Renormalization and Ward identities using complex space-time dimension. J. Math. Phys. 15 (1974), 1-6.

8. Eugene R. Speer, Lectures on analytic renormalization. Univ. of Maryland lectures, 1972. Preprint.

7. Eugene R. Speer, On the structure of analytic renormalization. Commun. Math. Phys. 23 (1971), 23-36. Added note: Commun. Math. Phys., 25 (1972), 336.

6. Tullio Regge, Eugene R. Speer and Michael J. Westwater, The monodromy rings of the necklace graphs. Fortschritte der Physik 20 (1972), 265-420.

5. E. R. Speer and M. J. Westwater, Generic Feynman amplitudes. Ann. Inst. H. Poincaré 14A (1971), 1-55.

4. G. Ponzano, T. Regge, E. R. Speer, and M. J. Westwater, The monodromy rings of one loop Feynman integrals. Commun. Math. Phys., 18 (1970), 1-64.

3. G. Ponzano T. Regge, E. R. Speer and M. J. Westwater, The monodromy rings of a class of self-energy graphs. Commun. Math. Phys.15 (1969), 83-132.

2. Eugene R. Speer, Generalized Feynman Amplitudes. Princeton University Press, Princeton (1969).

1. Eugene R. Speer, Analytic renormalization. J. Math. Phys. 9 (1969), 1404-1410.


Return to home page of Eugene R. Speer
Last updated 02/21/2012.