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Abstract

H. Woodin in [6] studied a class of fixed point measures in order to define a repre-
sentation for subsets of Vλ+1 called a U(j)-representation in L(Vλ+1) under the large
cardinal hypothesis I0. The propagation of these representations in [6] depended on
a particular assumed property of these fixed point measures which we demonstrate
below.

The structure L(Vλ+1) under the assumption of I0 at λ has been shown to have many
structural similarities to L(R) assuming AD holds in L(R) (see [6] and[1]). Along these
lines, H. Woodin defined a representation for subsets of Vλ+1 in L(Vλ+1), called a U(j)-
representation, which is very similar to a weakly-homogeneously Suslin representation in the
context of L(R). The propagation of these representations in L(Vλ+1) has been shown to
have many important consequences (see [6]). However it is still unclear which subsets of
Vλ+1 in L(Vλ+1) have such a representation.

We demonstrate a property below of certain fixed point measures which by results in [6]
and [1] implies that every subset of Vλ+1 in Lκ(Vλ+1) has a U(j)-representation in L(Vλ+1),
where κ is the least Σ1(Vλ+1 ∪ {Vλ+1})-gap. This extends results of [2] and [6] which imply
that every subset (a bit beyond) Lλ+(Vλ+1) has a U(j)-representation in L(Vλ+1). It is still
an open question whether every subsets of Vλ+1 in L(Vλ+1) has a U(j)-representation in
L(Vλ+1), a result which would have many interesting consequences (see [6] and [1]). Our
results also show that, at least in terms of the ranks of the fixed point measures which
constitute U(j)-representations, there seems to be no barrier to every subset of Vλ+1 having
such a representation in L(Vλ+1).

1 U(j)-representations

We define the notion of a U(j)-representation and the fixed point measures which are needed
in the definition. Our main concern will be the properties of these measures. For a complete
introduction to U(j)-representations see [6], Chapter 7.

We fix λ and j : L(Vλ+1) → L(Vλ+1) elementary with crit (j) < λ for the rest of the
paper. We will use the notation j(i) to denote the i-th iterate of j to distinguish it from our
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inverse limit notation. First define

Fκ(j) = {a ∈ Lκ(Vλ+1)| j(a) = a}

and let
Fωκ (j) =

⋃
n<ω

Fκ(j(n)).

Set Nj(a) to be the least n such that j(n)(a) = a.

Definition 1 (Woodin). Let U(j) be the set of U ∈ L(Vλ+1) such that in L(Vλ+1) the
following hold:

1. U is a λ+-complete ultrafilter.

2. For some γ < Θ, U is generated by U ∩ Lγ(Vλ+1).

3. For all sufficiently large n < ω, j(n)(U) = U and for some A ∈ U ,

{a ∈ A| j(n)(a) = a} ∈ U.

For each ordinal κ, let ΘLκ(Vλ+1) denote the supremum of the ordinals α such that there is a
surjection ρ : Vλ+1 → α such that {(a, b)| ρ(a) < ρ(b)} ∈ Lκ(Vλ+1). Suppose that κ < Θ and
κ ≤ ΘLκ(Vλ+1). Then E(j, κ) is the set of all elementary embeddings k : Lκ(Vλ+1)→ Lκ(Vλ+1)
such that there exists n,m < ω such that k(n) = j(m) � Lκ(Vλ+1).

Note that if j(κ) = κ, then j(E(j, κ)) = E(j, κ).
Suppose that κ < Θ and that κ ≤ ΘLκ(Vλ+1). For each δ ≤ λ let F δ(E(j, κ)) be the filter

on P (κ) ∩ L(Vλ+1) generated by the sets

{Dσ|σ ∈ [E(j, κ)]δ},

where for each σ ∈ [E(j, κ)]δ,

Dσ = {b ∈ Lκ(Vλ+1)| k(b) = b for all k ∈ σ},

the common fixed points of elements of σ.

Lemma 2 (Woodin). Suppose κ < Θ, κ ≤ ΘLκ(Vλ+1) and that j(κ) = κ. Then there is
δ < crit (j) and a partition {Sα|α < δ} ∈ L(Vλ+1) of Lκ(Vλ+1) into Fλ(E(j, κ))-positive sets
such that for each α < δ,

Fλ(E(j, κ)) � Sα ∈ U(j).

Proof. First, we have that since j(κ) = κ that

j(E(j, κ)) = E(j, κ) and j(Fλ(E(j, κ))) = Fλ(E(j, κ)).
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Now we show that there is no sequence 〈Sα|α < crit (j)〉 ∈ L(Vλ+1) of pairwise disjoint
Fλ(E(j, κ))-positive sets. This follows since

{a ∈ Lκ(Vλ+1)| j(a) = a} ∈ Fλ(E(j, κ)),

and hence if
j(〈Sα|α < crit (j)〉) = 〈Tα|α < j(crit (j))〉 ,

then there exists a β such that β ∈ Tcrit (j) and j(β) = β. But then by elementarity, there
exists an α < crit (j) such that β ∈ Sα. But then j(β) = β ∈ Tα, a contradiction.

Now, since Fλ(E(j, κ)) is λ+-complete, there must exists a δ < crit (j) and a partition
{Sα|α < δ} ∈ L(Vλ+1) of Lκ(Vλ+1) into Fλ(E(j, κ))-positive sets such that for each α < δ,
Fλ(E(j, κ)) � Sα is an ultrafilter.

For α < δ, let Uα be the ultrafilter given by Fλ(E(j, κ)) � Sα. We have that Uα is
λ+-complete since Fλ(E(j, κ)) is λ+-complete. Furthermore we have that

Bα := {a ∈ Sα| j(a) = a)} ∈ Uα.

And hence we have that j(Uα) = Uα, since for all β ∈ Bα, β ∈ Sα ⇐⇒ β ∈ j(Sα). So we
have that for all α < δ, Uα ∈ U(j).

Suppose that κ < Θ and κ ≤ ΘLκ(Vλ+1). Suppose that 〈ai| i < ω〉 is a sequence of
elements of Lκ(Vλ+1) such that for all i < ω, there exists an n < ω such that j(n)(ai) = ai.
Let U(j, κ, 〈ai| i < ω〉) denote the set of U ∈ U(j) such that there exists n < ω such that for
all k ∈ E(j, κ), if k(ai) = ai for all i ≤ n, then

{a ∈ Lκ(Vλ+1)| k(a) = a} ∈ U.

The proof of Lemma 2 easily generalizes to obtain measures in U(j, κ, 〈ai| i < ω〉). We
can now define U(j)-representations for subsets of Vλ+1.

We now define U(j)-representations, which are very similar to weakly-homogeneously
Suslin representations, but made specific to the particularities of working at λ instead of ω.

Definition 3 (Woodin). Suppose κ < Θ, κ is weakly inaccessible in L(Vλ+1), and 〈ai| i < ω〉
is an ω-sequence of elements of Lκ(Vλ+1) such that for all i < ω there is an n < ω such that
j(n)(ai) = ai.

Suppose that Z ∈ L(Vλ+1) ∩ Vλ+2. Then Z is U(j, κ, 〈ai| i < ω〉)-representable if there
exists an increasing sequence 〈λi| i < ω〉, cofinal in λ and a function

π :
⋃
{Vλi+1 × Vλi+1 × {i}| i < ω} → U(j, κ, 〈ai| i < ω〉)

such that the following hold:

1. For all i < ω and (a, b, i) ∈ dom(π) there exists A ⊆ (L(Vλ+1))i such that A ∈ π(a, b, i).
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2. For all i < ω and (a, b, i) ∈ dom(π), if m < i then

(a ∩ Vλm , b ∩ Vλm ,m) ∈ dom(π)

and π(a, b, i) projects to π(a ∩ Vλm , b ∩ Vλm ,m).

3. For all x ⊆ Vλ, x ∈ Z if and only if there exists y ⊆ Vλ such that

(a) for all m < ω, (x ∩ Vλm , y ∩ Vλm ,m) ∈ dom(π),

(b) the tower
〈π(x ∩ Vλm , y ∩ Vλm ,m)|m < ω〉

is well founded.

For Z ∈ L(Vλ+1)∩Vλ+2 we say that Z is U(j)-representable if there exists (κ, 〈ai| i < ω〉)
such that Z is U(j, κ, 〈ai| i < ω〉)-representable.

2 Inverse Limits

In this section we give a very brief outline of the theory of inverse limits. These structures
were originally used for reflecting large cardinal hypotheses of the form: there exists an
elementary embedding Lα(Vλ+1) → Lα(Vλ+1). The use of inverse limits in reflecting such
large cardinals is originally due to Laver [4]. For an introduction to the theory of inverse
limits see [4], [5], and [2].

Suppose that 〈ji| i < ω〉 is a sequence of elementary embeddings such that the following
hold:

1. For all i, ji : Vλ+1 → Vλ+1 is elementary.

2. There exists λ̄ < λ such that crit j0 < crit j1 < · · · < λ̄ and limi<ω crit ji = λ̄ =: λ̄J .

Then we can form the inverse limit

J = j0 ◦ j1 ◦ · · · : Vλ̄ → Vλ

by setting
J(a) = lim

i→ω
(j0 ◦ · · · ◦ ji)(a)

for any a ∈ Vλ̄. J : Vλ̄ → Vλ is elementary, and can be extended to a Σ0-embedding
J∗ : Vλ̄+1 → Vλ+1 by J(A) =

⋃
i J(A ∩ Vλ̄i) for

〈
λ̄i| i < ω

〉
any cofinal sequence in λ̄.

Suppose J = j0 ◦ j1 ◦ · · · is an inverse limit. Then for i < ω we write Ji := ji ◦ ji+1 ◦ · · · ,
the inverse limit obtained by ‘chopping off’ the first i embeddings. For i < ω we write

J (i) := (j0 ◦ · · · ◦ ji)(J)
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and for n < ω,
J (i)
n := (j0 ◦ · · · ◦ ji)(Jn), j(i)

n := (j0 ◦ · · · ◦ ji)(jn).

Then we can rewrite J in the following useful ways:

J = j0 ◦ j1 ◦ · · · = · · · (j0 ◦ j1)(j2) ◦ j0(j1) ◦ j0
= · · · j(1)

2 ◦ j
(0)
1 ◦ j0

and

J = j0 ◦ J1 = j0(J1) ◦ j0 = J
(0)
1 ◦ j0

= (j0 ◦ · · · ◦ ji−1)(Ji) ◦ j0 ◦ · · · ◦ ji−1 = J
(i−1)
i ◦ j0 ◦ · · · ◦ ji−1

for any i > 0. Hence we can view an inverse limit J as a direct limit.
We let E be the set of inverse limits. So

E = {(J, 〈ji| i < ω〉)| J = j0 ◦ j1 ◦ · · · : Vλ̄J → Vλ is elementary}.

This is a slightly larger collection than is defined in for instance in [2]. Note that we will
many times be sloppy and refer to an inverse limit as ‘J ’, ‘(J,~j)’ or ‘(J, 〈ji〉)’ instead of
‘(J, 〈ji| i < ω〉)’.

Define

Eα = {(J,~j) ∈ E| ∀i < ω (ji extends to an elementary embedding Lα(Vλ+1)→ Lα(Vλ+1))}.

We say that α is good if every element of Lα(Vλ+1) is definable over Lα(Vλ+1) from elements
of Vλ+1. Note that the good ordinals are cofinal in Θ.

Lemma 4 (Laver). Suppose there exists an elementary embedding

j : Lα+1(Vλ+1)→ Lα+1(Vλ+1)

where α is good. Then Eα 6= ∅.

An important property of inverse limits is to what extend they extend beyond Vλ+1 (see
[2]). However, in the next section we will consider a different type of extension, where we use
inverse limits more as operators than embeddings. With that in mind we make the following
definition.

Definition 5. For α < Θ set

Eeα = {(J,~j)| (J,~j � Vλ+1) ∈ E ,∀i(ji : Lα(Vλ+1)→ Lα(Vλ+1))}.

Suppose that (J,~j) ∈ Eeα. Then we say that a ∈ Lα(Vλ+1) is in the extended range of J if for

all i < ω, a ∈ rng (j0 ◦ · · · ◦ ji). Also suppose that (K,~k) ∈ Eeα for some α. We put

Kext(a) = lim
i→ω

(k0 ◦ · · · ◦ ki)(a)

if this limit exists (in the sense that for all large enough i, ki(a) = a).

5



Lemma 6. Suppose that (J,~j) ∈ Eeα+1 for α good. Then for all i < ω, J
(i−1)
i ∈ Eeα.

Proof. This follows immediately by elementarity, and the fact that α is good.

Definition 7. Suppose
(J, 〈ji〉), (K, 〈ki〉) ∈ E .

Then we say that K is a limit root of J if there is n < ω such that λ̄J = λ̄K and

∀i < n (ki = ji) and ∀i ≥ n (ki(ki) = ji).

We say K is an n-close limit root of J if n witnesses that K is a limit root of J . We also
say that K and J agree up to n if for all i < n, ji = ki.

Also for j : Vλ+1 → Vλ+1 elementary and (K,~k) ∈ E we say that K is a limit root of j if
for all i < ω, ki(ki) = j and for all n < i, kn ∈ rng ki.

3 The rank game for fixed point measures

We now introduce the game on fixed points of elementary embeddings which we will be
working with for the rest of the paper. Below we will give some motivation for how this
game proceeds.

Definition 8. Suppose γ < ΘL(Vλ+1) and

〈ai| i < ω〉 ∈ (Lγ(Vλ+1))ω

and we have:

1. γ ≤ ΘLγ(Vλ+1),

2. for all i < ω, ai ⊆ ai+1 ⊆ γ and |ai| < λ,

3. for all i < ω, there exists an n < ω such that j(n)(ai) = ai.

Then let G(j, γ, 〈ai| i < ω〉) denote the following game. Player I plays a sequence〈
(γi,

〈
bim : m < ω

〉
) : i < ω

〉
and player II plays a sequence 〈Ei : i < ω〉 such that the following hold:

1. Ei ⊆ Emb(j, γi), |Ei| ≤ λ, and for each k ∈ Ei there exists m < ω such that k(bim) = bim.

2. γ0 = γ, γi+1 < γi and there exists m < ω such that

k(bim) = bim ⇒ k(γi+1) = γi+1

for all k ∈ Ei.
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3. for all i < ω, γi ≤ ΘLγi (Vλ+1),

4. 〈b0
m : m < ω〉 = 〈am : m < ω〉.

5. for all m < ω, bim ⊆ bim+1 ⊆ γi and |bim| < λ

6. for all m < ω there exists m∗ < ω such that

k(bim∗) = bim∗ ⇒ k(bi+1
m ) = bi+1

m

for all k ∈ Ei.

Of course II always wins this game, but we are interested in the rank of this game, which
we define as follows.

Definition 9. Let Gδ(j, γ, 〈ai| i < ω〉) have the same definition as G(j, γ, 〈ai| i < ω〉) except
that II must also play ordinals δ0 > δ1 > · · · such that δ0 < δ. Then if δ is least such that II
has a quasi-winning strategy in Gδ(j, γ, 〈ai| i < ω〉), then we set δ = rank(j, γ, 〈ai| i < ω〉).

Our main goal (see Theorem 21) is to show that for any δ < Θ we can find γ and
〈ai| i < ω〉 such that rank(j, γ, 〈ai| i < ω〉) ≥ δ. That is, the rank of this game can be made
arbitrarily large by an appropriate choice of parameters.

Definition 10. Suppose γ < ΘL(Vλ+1), S ⊆ Lγ(Vλ+1), and 〈ai| i < ω〉 ∈ (Lγ(Vλ+1))ω and we
have:

1. γ ≤ ΘLγ(Vλ+1),

2. for all i < ω, ai ⊆ ai+1 ⊆ γ and |ai| < λ,

3. for all i < ω, ai ∈ Fωγ+1(j).

4. S =
⋃
i<ω ai.

Then we say that 〈ai| i < ω〉 is a j-stratification of S.

Suppose that j : L(Vλ+1) → L(Vλ+1). Note that for all S ⊆ FωΘ(j) such that |S| ≤ λ,
there is a γ < Θ and a 〈ai| i < ω〉 ∈ (Lγ(Vλ+1))ω such that 〈ai| i < ω〉 is a j-stratification of S.
Hence for any γ < λ+, if 〈ai| i < ω〉 is a j-stratification of γ, then rank(j, γ, 〈ai| i < ω〉) = γ.
An instructive example then is to show that rank(j, λ+, ∅) = λ+, which we leave to the
reader.

We define some more terminology for the objects which appear in the game G(j, γ,~a).

Definition 11. Suppose that ~E and S ⊆ Ord are such that for all α ∈ S there exists an i
such that for all k ∈ E i, k(α) = α. Let ~a be defined by

ai = {α ∈ S| ∀k ∈ Ei (k(α) = α)}.
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We say that ~a is the stratification of S with respect to ~E .
Suppose ~a is such that a0 ⊆ a1 ⊆ · · · ,

ai ⊆ {α ∈ S| ∀k ∈ Ei (k(α) = α)}

and for all i, |ai| < crit j(i). Then we say that ~a is a j-layering of S with respect to ~E .

Our main strategy in playing the above game is to guide Player I using inverse limits. In
order to do this, we first give a lemma whose proof gives an outline for working with inverse
limits in this context. We will then consider a certain simple decomposition of ordinals which
our embeddings preserves, and then we will use these decomposition in order to ensure that
we have provided enough room for Player I to continue playing.

Lemma 12. Suppose that α is good and (J,~j) ∈ Eeα. Then if 〈κi| i < ω〉 is defined by

κi = crit (J
(i−1)
i ) for i < ω, and 〈ai| i < ω〉 is such that for all i < ω, |ai| < κi and ai ⊆ Vλ+1,

then there is an inverse limit (K,~k) ∈ Eeα such that for all i < ω, ai ⊆ rngK
ext,(i−1)
i .

Proof. By basic facts about inverse limits (see for instance [1]), there is (K,~k) satisfying the
following.

1. (K,~k) ∈ Eeα.

2. For all i < ω, ai ∈ rng kn for all i, n < ω.

3. For all i < ω, k0 � Vλ, . . . , ki � Vλ ∈ rng ki+1.

4. For all i < ω, κi > crit (K
(i−1)
i ) > |ai|.

Now we claim that (K,~k) satisfies the lemma. To see this, note that clearly a0 ⊆ rngK
since conditions 2 and 3 imply that for all i < ω, a0 ∈ rng k0 ◦ · · · ki, and since crit (K) >
κ0 > |a0|, we must have that a0 ⊆ rngK. Hence to see that the lemma holds, it is enough

to see that for all i < ω, ai ∈ rng k
(i−1)
n for all n ≥ i. But for any i < ω,

(k0 ◦ · · · ◦ ki−1)−1(ai) ∈ rng kn

for all n ≥ i. And hence applying k0 ◦ · · · ◦ ki−1, by elementarity we have the desired
result.

Lemma 13. Suppose that 〈ai| i < ω〉 is a j-layering of S with S ⊆ γ for some γ. Suppose
that (J,~j) ∈ Eeη+2 is such that η ≥ γ is good and for all i < ω,

J
ext,(i−1)
i (ai) = ai.

Then there exists a (K,~k) ∈ Eeη+1 a limit root of J such that for all i < ω,

K
ext,(i−1)
i (ai) = ai.
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Proof. This follows as in the proof of Lemma 12 by noticing that if γ is good and j(γ) =
k(γ) = γ, then for α < γ an ordinal, if ji(α) = α, ki is a square root of ji and α ∈ rng ki
then ki(α) = α. Hence defining (K,~k) ∈ Eeη+1 as in the proof of Lemma 12, we have that

for all i < ω and ξ ∈ ai, ξ ∈ rngK
ext,(i−1)
i . But since J

ext,(i−1)
i (ξ) = ξ, we have that

K
ext,(i−1)
i (ξ) = ξ.

Definition 14. Fix κ < Θ good with cof(κ) > λ. Let S ⊆ κ such that |S| ≤ λ. Then we
say that S is λ-threaded if the following hold:

1. Suppose α < supS is such that there exists ~β ∈ S<ω and a ∈ Vλ such that α is definable
over Lκ(Vλ+1) from ~β and a. Then α ∈ S.

2. Suppose α ∈ S is a limit and cof(α) < λ. Then S ∩ α is cofinal in α.

We say that S is definably closed if S satisfies (1).

Since λ-DC holds in L(Vλ+1), we have that for every S ⊆ κ with |S| ≤ λ, there is S ′ ⊆ κ
with S ′ ⊇ S and |S ′| ≤ λ such that S ′ is λ-threaded.

We put for E a set such that for all k ∈ E, k : Lα(Vλ+1) → Lα(Vλ+1) is elementary for
some α < Θ,

F(E) = {β| ∀k ∈ E (k(β) = β)}.
We now need to make some technical definitions involving ordinals. The main point is

that we want to decompose an ordinal into basic components where we understand enough
of how our elementary embeddings behave on these components. We start with a lemma
which allows us to make our definitions.

Lemma 15. Suppose α is a limit ordinal. Then there exists a γ < α such that for all
β ∈ [γ, α) if β0 is such that β = γ + β0, then for all δ < α, δ + β0 < α.

Proof. We prove this by induction on α. Suppose that α is such that there exists a β < α
such that for some δ < α, β + δ ≥ α. Let α∗ ≤ α be the sup of ordinals γ < α such that for
all β, δ < γ, δ + β < γ. Call the set of such ordinals A. Then clearly α∗ ∈ A. So α∗ < α.
Let α0 be such that α∗ + α0 = α.

We claim that α0 < α. If not, then α∗ + α = α. But then α∗ · ω ≤ α, and α∗ · ω ∈ A, a
contradiction.

But then by applying the lemma to α0, we have that there exists a γ < α0 such that
for all β ∈ [γ, α0) if β0 is such that β = γ + β0, then for all δ < α0, δ + β0 < α0. But if
β ∈ [γ, α0) then α∗ + β < α and for some β0,

α∗ + β = α∗ + γ + β0.

Hence γ0 = α∗ + γ witnesses the lemma for α. To see this let β ∈ [γ0, α) and let β0 be
such that α∗ + γ + β0 = β. Suppose δ ∈ [α∗, α). Let δ∗ be such that α∗ + δ∗ = δ. Then we
have that δ∗ < α0, and hence δ∗ + β0 < α0. But then

α∗ + δ∗ + β0 = δ + β0 < α∗ + α0 = α,

which proves the lemma.
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From the previous lemma, given a limit ordinal α there is a decomposition,

α = α0 + α1 + · · ·+ αn

for some n with α0 > α1 > · · · > αn, and such that for all for all i < n, for all

β ∈ [α0 + · · ·+ αi, α0 + · · ·+ αi+1)

if β0 is such that
β = α0 + · · ·+ αi + β0

then for all δ < α0 + · · · + αi+1, δ + β0 < α0 + · · · + αi+1. To see this, let α = α∗0 + δ0

be given by the lemma such that α∗0 is as small as possible. Then if α∗0 6= 0, apply the
lemma to α∗0 to obtain α∗0 = α∗1 + δ1 where α∗1 is as small as possible, and so forth to obtain
α = δn + δn−1 + · · · + δ0. We then set αi = δn−i. Note that δn > δn−1 > · · · > δ0 as, for
instance, if δ1 ≤ δ0, then α = α∗1 + δ1 + δ0. But if β ∈ [α∗1, α) and β = α∗1 +β0, either β0 < δ1

or β0 = δ1 + β1 where β1 < δ0. But then in the latter case for any γ < α, we have that
γ+ δ1 < α since δ1 < δ0, and hence γ+ δ1 +β1 = γ+β0 < α. Hence in either case γ+β0 < α
for any γ < α, and so α = α∗1 + (δ1 + δ0) is a decomposition of α which satisfies the lemma,
contradicting the definition of α∗0, since α∗1 < α∗0.

We call 〈α0, . . . , αn〉 the addition decomposition of α.
We define the function c(α, β) for β < α as follows. Let 〈α0, . . . , αn〉 be the addition

decomposition of α. Let i be largest such that α0 + · · ·+ αi ≤ β, and let β0 be such that

α0 + · · ·+ αi + β0 = β.

Set c(α, β) = β0.
Also define the following functions:

ld(α) := α0 + · · ·+ αn−1

if n > 0 and ld(α) = 0 otherwise, where 〈α0, . . . , αn〉 is the addition decomposition of α, and

rd(α) := αn.

Lemma 16. Suppose that β + γ = α. Let 〈α0, . . . , αn〉 be the addition decomposition of α.
Then for some i, γ = αi + · · ·+ αn.

Proof. Note that we have for some i that β = α0 + · · ·+αi−1 +β′ and γ = γ′+αi+1 + · · ·+αn
for some β′ and γ′ such that β′ + γ′ = αi. Furthermore, if β and γ were a contradiction to
the lemma, we would have that β′, γ′ < αi and β′, γ′ 6= 0. But then β′+γ′ < αi by definition
of the addition decomposition, a contradiction.

Lemma 17. Suppose that β + γ = α and γ 6= ∅. Then rd(γ) = rd(α).
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Proof. By the previous lemma, if 〈α0, . . . , αn〉 is the addition decomposition of α, we have
that γ = αi + · · · + αn for some i. So it is enough to see that 〈αi, . . . , αn〉 is the addition
decomposition of γ. But this is basically immediate by the definition.

We need some notation and a theorem from [3] which give us a useful structure of inverse
limits.

Definition 18. Let κ < Θ be good and let λ̄, κ̄ < λ . For β < κ we define by induction a
set Eκ

λ̄,κ̄
(β) of inverse limits as follows.

Eκλ̄,κ̄(0) = {(J,~j) ∈ Eκ| J extends to Ĵ : Lκ̄(Vλ̄+1)→ Lκ(Vλ+1) which is elementary}.

Then for any β such that 0 < β < κ we set

Eκλ̄,κ̄(β) = {(J,~j) ∈ Eκλ̄,κ̄(0) ∩ Eκ+β| ∀γ < β (if (J,~j) ∈ Eκ+γ then

∀a ∈ Vλ̄+1 ∀b ∈ Vλ+1 ∃(K,~k) ∈ Eκλ̄,κ̄(γ)

(K(a) = J(a) ∧ b ∈ rngK ∧K is a 0-close limit root of J))}.

Theorem 19 ([3]). Suppose that there exists an elementary embedding

j : LΘ(Vλ+1)→ LΘ(Vλ+1).

Let κ be good. Then there exists κ̄, λ̄ < λ such that for all β < κ, Eκ
λ̄,κ̄

(β) 6= ∅. Furthermore

for all β < κ, Eκ
λ̄,κ̄

(β) is definable over Lκ+β+1(Vλ+1) from λ̄, κ̄ and κ.

We fix a good limit ordinal κ < Θ, and ordinals κ̄, λ̄ < λ for the rest of the section which
are given by Theorem 19. Furthermore for any β and J ∈ Eκ

λ̄,κ̄
(β), we let Ĵ be the unique

extension of J to an elementary embedding Ĵ : Lκ̄(Vλ̄+1)→ Lκ(Vλ+1). Similarly we let Jext

be the natural extension of J , considering it as extending to an element of Eeκ.
We first consider a more restrictive version of the above game. This game, in some sense,

captures a version of G(j, γ, 〈ai| i < ω〉) where only the ‘local largeness’ of the γi matter.
Later on when we play G(j, γ, 〈ai| i < ω〉), we will do so by playing many versions of this
more restrictive game.

Lemma 20. Suppose that α0 < κ is an ordinal with cof(α0) > λ, (J0,~j0) ∈ Eκ+α0+2,
Ĵ0 exists, and α0 ∈ rng Ĵ0. Then II has a quasi-winning strategy in the following game
G(α0, J

0)
I β0, γ0 β1, γ1 · · ·
II α1, (J

1,~j1) α2, (J
2,~j2) · · ·

which has the following rules.

1. For all i, αi, βi, γi < κ.

2. β0 > β1 > β2 > · · · and α0 > α1 > α2 > · · · . Also α0 > β0.
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α0

γ0

β0

ld(β0)

ld(α0)

α1

γ1

ld(α1)

β1

ld(β1)

α2

γ2

ld(α2)

β2

ld(β2)

α3

γ3

ld(α3)

β3

ld(β3)

· · ·

Figure 1: Typical play of G(α0, J
0).

3. For all i, if cof(βi) > λ then cof(αi+1) > λ.

4. For all i, (J i,~ji) ∈ Eκ
λ̄,κ̄

(κ+ αi + 2), Ĵ i exists and αi ∈ rng Ĵ i.

5. For all i, γi ∈ (ld(αi), αi), (J i)ext(γi) = γi and αi+1 ≥ γi.

6. For all i, αi+1 is definable over Lκ+αi+2(Vλ+1) from parameters in

{α0, . . . , αi} ∪ {γi, κ} ∪ λ,

and (J i+1)ext(αi+1) = αi+1.

7. For all i, βi+1 > ld(βi) and βi > ld(α0).

The first player to violate one of the rules loses.

Proof. We describe a quasi-winning strategy for II. First suppose that I plays β0, γ0. Let

K0 ∈ Eκλ̄,κ̄(κ+ α0 + 1)
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be a 0-close limit root of J0 such that β0 ∈ rng K̂0, (K0)ext(γ0) = γ0, and

Ĵ0(ᾱ0) = α0 = K̂0(ᾱ0)

for some ᾱ0. Let β̄0 be such that K̂0(β̄0) = β0. Now we have by elementarity that ld(ᾱ0) < β̄0.
So let β̄∗0 be such that

ld(ᾱ0) + β̄∗0 = β̄0.

Let β−0 be the least β such that there exists (K,~k) ∈ Eκ
λ̄,κ̄

(κ+ α0 + 1) with

K̂(β̄∗0) = β, Kext(β) = β, and Kext(γ0) = γ0.

Let α1 = γ0 + β−0 . Clearly we have that α1 is definable over Lκ+α0+2(Vλ+1) from λ̄, κ̄, κ, γ0

and β̄∗0 . Furthermore we have that α1 < α0 since β−0 ≤ K̂0(β̄∗0), and for all δ < α0,

δ + K̂0(β̄∗0) < α0.

To see that β−0 ≤ K̂0(β̄∗0), note that in fact

β−0 ≤ (Kext)−1(K̂0(β̄∗0))

since for large enough i, K0
i satisfies the above conditions in the definition of β−0 , and hence

gives this inequality, since for all large enough i < ω,

K̂0
i (β̄∗0) = (Kext)−1(K̂0(β̄∗0)).

Let (J1,~j1) ∈ Eκ
λ̄,κ̄

(κ+ α0 + 1) be such that

Ĵ1(β̄∗0) = β−0 , (J1)ext(β−0 ) = β−0 and (J1)ext(γ0) = γ0.

Then clearly (J1)ext(α1) = α1. Also, if cof(β0) > λ, then cof(β̄∗0) > λ̄ and hence cof(α1) > λ,
all by elementarity.

Now suppose that I has played β0, . . . , βi and γ0, . . . , γi satisfying the rules and II has
responded with α1, . . . , αi and (J1,~j1), . . . , (J i,~ji) satisfying the rules. Also assume that II
has chosen β̄0, . . . , β̄i−1 and K0, . . . , Ki−1 satisfying that for all n < i, K̂n(β̄n) = βn and
Ĵn+1(β̄∗n) = β−n where β−n is such that γn + β−n = αn+1.

Let (Ki, ~ki) ∈ Eκ
λ̄,κ̄

(κ+ αi + 1) be such that for some β̄i

K̂i(β̄i) = βi, K̂i(β̄i−1) = βi−1, and K̂i(β̄∗i−1) = β−i−1,

and
(Ki)ext(γi, γi−1, β

−
i−1) = (γi, γi−1, β

−
i−1).

Now we have ld(β̄i−1) < β̄i. So let β̄∗i be such that ld(β̄i−1) + β̄∗i = β̄i.

Let β−i be the least β such that there exists (K,~k) ∈ Eκ
λ̄,κ̄

(κ+ αi + 1) with

K̂(β̄∗i ) = β, Kext(β) = β, and Kext(γi) = γi.
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Let αi+1 = γi + β−i . Clearly we have that αi+1 is definable over Lκ+αi+2(Vλ+1) from λ̄, κ̄, κ,
γi and β̄∗i . Furthermore we have that αi+1 < αi since

β−i ≤ K̂i(β̄∗i ),

and β̄i−1 = γ + β̄∗i−1 for some γ implies by Lemmas 16 and 17 that

rd(β̄∗i−1) = rd(β̄i−1) > β̄∗i

by definition of β̄∗i and the fact that β̄i > β̄i−1. But applying K̂i we get that

rd(β−i−1) > K̂i(β̄∗i ) ≥ β−i

which is enough to show that

αi+1 = γi + β−i < αi = γi−1 + β−i−1.

To see that β−i ≤ K̂i(β̄∗i ), as above note that in fact

β−i ≤ ((Ki)ext)−1(K̂i(β̄∗i ))

since for large enough m, Ki
m satisfies the above conditions in the definition of β−i , and hence

gives this inequality, since for all large enough m < ω,

K̂i
m(β̄∗m) = (Kext)−1(K̂0(β̄∗0)).

Let (J i+1,~ji+1) ∈ Eκ
λ̄,κ̄

(κ+ αi + 1) be such that

Ĵ i+1(β̄∗i ) = β−i , (J i+1)ext(β−i ) = β−i and (J i+1)ext(γi) = γi.

Then clearly (J i+1)ext(αi+1) = αi+1. Also, if cof(βi) > λ, then cof(β̄∗i ) > λ̄Ji+1 and hence
cof(αi+1) > λ.

We have described a quasi-winning strategy for II, which proves the lemma.

Theorem 21. Let j : L(Vλ+1) → L(Vλ+1) be elementary. Fix κ < Θ good and regular
in L(Vλ+1). Suppose that S has a largest element α0, S is λ-threaded, and 〈ai| i < ω〉 is a
j-stratification of S. Then rank(j, κ+ α0,~a) ≥ α0.

Proof. We prove this by induction on α0. Clearly, if α0 = α′0 + 1 then S ∩ α0 is λ-threaded
and has largest element α′0, hence the induction is immediate.

Now assume that α0 is a limit. There are two cases. Either cof(α) < λ or cof(α) > λ.
First assume that cof(α0) < λ. Then there must be a sequence 〈βi| i < cof(α0)〉 cofinal

in α0 such that for all i < cof(α0), βi ∈ S. Hence we have that S ∩ βi + 1 is λ-threaded and
has largest element βi. So by induction we have that

rank(j, κ+ βi, 〈ai ∩ βi + 1| i < ω〉) ≥ βi.
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Figure 2: Strategy for G(j, κ+ α0,~a).
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But then clearly we have that rank(j, κ + α0,~a) ≥ supi βi = α0 since for all i < ω we have
that for some n, βi ∈ an.

Now assume that cof(α0) > λ. Based on an arbitrary sequence β0 > β1 > · · · with
β0 < α0 we will choose responses αi and ~ai which are legal plays against a play by II in
G(j, κ+ α0,~a).

Let β0 < α0. Let ~E0 be a first play by II in G(j, κ+ α0,~a) and set S0 = S.
Let (J0,~j0) ∈ Eκ

λ̄,κ̄
(κ + α0 + ω) be such that α0 ∈ rng Ĵ0 and (J0)ext(α0) = α0. Let

T0 ⊆ β0 + 1 be λ-threaded with β0 ∈ T0.
For each β ∈ T0 \ supS0, we play a version of G(α0, J

0) and define f(β) by induction on
the order of T0 \ supS0. We call this game G(α0, J

0)[β] and let α[β] be a winning response
by II to the play β, f(β) by I. Let i be least such that

α0 ∈
⋂
n≥i

F(E0
n).

Assume we have defined f(β′) and α[β′] for all β′ ∈ β ∩ (T0 \ supS0). Let γ be least such
that for all β′ ∈ β ∩ (T0 \ supS0),

γ > α[β′], ∀n ≥ i (γ ∈ F(E0
n)), and (J0)ext(γ) = γ.

Set f(β) = γ.
Let

S1 = {α[β]| β ∈ T0 \ supS0} ∪ (S0 ∩ α0)

and let ~a1 be a j-layering of S1 with respect to E0. Note that for all α ∈ S1\sup(S0∩α0), there
exists an i such that for some γ ∈

⋂
n≥iF(E0

n), α is definable from parameters in {α0, γ, κ}∪λ
over Lκ+α0+2(Vλ+1). Hence there exists an i′ such that for all n ≥ i′, α ∈ F(E0

n). I then plays
(~a1, α[β0]).

Now assume that I has played

(~a, α0), (~a1, α[β0]), . . . , (~an, α[β0, . . . , βn−1])

against ~E0, ~E1, . . . , ~En−1 and β0 > β1 > · · · > βn−1. Assume we have defined the following as
well.

1. T0, . . . , Tn−1 such that for i < n, Ti ⊆ βi + 1 is λ-threaded and βi ∈ Ti. Let

T ∗i = Ti \ (sup(Ti−1 ∩ βi)),

where T−1 = S0.

2. Suppose that δ0 > · · · > δm−1 is such that m ≤ n and the following hold: δ0 ∈ T ∗0 , and
for all i < m− 1, there is an i′ such that βi′ = δi, and δi+1 ∈ T ∗i′ . Then

G(α0, J
0)[δ0, . . . , δm−1]
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is an instance of G(α0, J
0) with

f(δ0), f(δ0, δ1), . . . , f(δ0, . . . , δm−1)

defined and with α[δ0] > · · · > α[δ0, . . . , δm−1] a winning response by II against the
play

(δ0, f(δ0)), (δ1, f(δ0, δ1)), . . . , (δm−1, f(δ0, . . . , δm−1)).

3. For Wn the set of such tuples (δ0, . . . , δm−1) the function f is defined on W such that
it is order preserving from lexicographically ordered tuples to ordinals. Furthermore
for all (δ0, . . . , δm−1) ∈ Wn, if s is such that δm−1 ∈ T ∗s , then there is an i such that for
all n′ ≥ i

f(δ0, . . . , δm−1) ∈ F(Esn′).

Now let βn < βn−1 and let ~En be a play by II. We can assume without loss of generality
that if

Tn−1 ∩ [βn, βn−1) 6= ∅

then βn ∈ Tn−1.
Suppose first that βn /∈ Tn−1. Let Tn ⊆ βn + 1 be λ-threaded such that βn ∈ Tn and

Tn−1 ∩ βn−1 ⊆ Tn. For each δ ∈ Tn \ (supTn−1 ∩ βn) we define f(βs(0), . . . , βs(m−1), δ) by
induction, where s is longest such that for all i < m − 1, there exists an i′ such that
βs(i) ∈ Ti′ but βs(i+1) /∈ Ti′ and s(m− 1) = n− 1:

First we know that βn−1 ∈ Tn−1 and it is the least element of Tn−1 greater than βn.
Hence cof(βn−1) > λ since Tn−1 is λ-threaded. Hence by definition of the game G(α0, J

0),
α∗ = α[βs(0), . . . , βs(m−1)] is such that cof(α∗) > λ. Let i be least such that for all i′ ≥ i,
α∗ ∈ F(Eni′ ). Let γ be least in

⋂
i′≥iF(Eni ) ∩ α∗ such that for all

δ′ ∈ δ ∩ (Tn \ (sup(Tn−1 ∩ βn)))

we have
α[βs(0), . . . , βs(m−1), δ

′] > γ.

Set f(s(0), . . . , s(m− 1), δ) = γ.
Now let

Sn = ({α[δ0, . . . , δm′−1]| (δ0, . . . , δm′−1) ∈ dom(f)} ∩ αn−1) ∪ (Sn−1 ∩ αn−1).

Set
αn = α[βs(0), . . . , βs(m−1), βn],

and let ~an be a j-layering of Sn with respect to ~En. I then plays (~an, αn).
Now suppose that βn ∈ Tn−1. Then we simply let Tn = Tn−1 ∩ βn + 1 and we set

αn = α[δ0, . . . , δm−1]
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where (δ0, . . . , δm−1) ∈ Wn is the unique sequence satisfying that δm−1 = βn. We set Sn =

Sn−1 ∩ αn + 1 and let ~an be a j-layering of Sn with respect to ~En. I then plays (~an, αn).
Clearly we have shown legal plays by I based on any finite sequence β0 > β1 > · · · . Hence

the induction is complete.

We immediately have the following theorems, which are our main results.

Theorem 22. Suppose there exists an elementary embedding j : L(Vλ+1)→ L(Vλ+1). Then
the supremum of rank(j, κ,~a) for all possible κ and ~a is Θ.

Theorem 23. Assume there exists an elementary embedding j : L(Vλ+1)→ L(Vλ+1). Let κ
be least such that

Lκ(Vλ+1) 6≺Vλ+1∪{Vλ+1}
1 Lκ+1(Vλ+1).

Then for all sets X ⊆ Vλ+1 such that X ∈ Lκ(Vλ+1), X is U(j)-representable in L(Vλ+1).

Proof. The theorem immediately follows by combining Theorem 148 of [6], Theorem 22, and
the fact that the Tower Condition holds (see [1]).
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