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Abstract

We define representations for subsets of Vλ+1 in L(Vλ+1) under the assumption
I0 which are similar to Suslin representations. We show that uniform versions of
these representations give generic absoluteness results for L(Vλ+1) similar to generic
absoluteness results of H. Woodin [10] from U(j)-representations.

A property is generically absolute if it cannot be changed by forcing. One important
example of generic absoluteness is the theorem of H. Woodin that if there is a proper class
of Woodin cardinals then the theory of L(R) is generically absolute (see [6]). In this paper
we consider generic absoluteness for a similar structure L(Vλ+1) under the assumption of I0

(see [4] for an introduction to L(Vλ+1)). While L(Vλ+1) and L(R) have remarkably similar
properties (assuming enough large cardinals), the theory of L(Vλ+1) is not generically abso-
lute, as the theory of Vλ is not generically absolute. Nevertheless Woodin [10] formulated a
restricted version of generic absoluteness for L(Vλ+1) using a (uniform version of a) represen-
tation for subsets of Vλ+1 called a U(j)-representation. In order to extend his results in [10]
an obvious approach is to extend the subsets of Vλ+1 which have U(j)-representations. We
take an alternative approach here (although our techniques were originally motivated by this
goal) and instead define a different representation which achieves a slightly stronger generic
absoluteness result. While U(j)-representations are analogous to weakly-homogeneously
Suslin representations in the context of R, we define representations which seem analogous
to Suslin representations. The main difference is that instead of considering trees of ordinals,
we consider trees on fixed points of iterates of our I0-embedding j.

It can be shown that j-Suslin representations do exist for all subsets of Vλ+1 in L(Vλ+1)
assuming I0, though we leave this verification for the sequel (see [2]). One consequence of our
results together with this existence theorem is obtaining the consistency of I0 at λ together
with the failure of the singular cardinal hypothesis at λ from I#

0 . This theorem follows by
results independently shown by Dimonte-Friedman and Woodin. In addition, our generic
absoluteness result, by a theorem of Shi-Woodin gives a new proof of the perfect set property
for subsets of Vλ+1.
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1 Inverse Limits

We first recall the definition of I0: we say that I0 holds at λ if there is a non-trivial elementary
embedding

j : L(Vλ+1)→ L(Vλ+1)

such that crit (j) < λ. We call such a j an I0 embedding. Below we will always assume our
elementary embeddings are non-trivial and that their critical points are below λ. We refer
the reader to [4] for an introduction to L(Vλ+1). Recall that in this context Θ = Θλ is the
sup of ordinal α such that in L(Vλ+1) there is a surjection of Vλ+1 onto α.

We now give a very brief outline of the theory of inverse limits in the context of L(Vλ+1).
These structures were originally used for reflecting large cardinal hypotheses of the form:
there exists an elementary embedding Lα(Vλ+1) → Lα(Vλ+1), although they now have a
variety of uses when working with L(Vλ+1). The use of inverse limits in reflecting such large
cardinals is originally due to Laver [7]. For an introduction to the theory of inverse limits
see [4], [7], and [8].

Suppose that 〈ji| i < ω〉 is a sequence of elementary embeddings such that the following
hold:

1. For all i, ji : Vλ → Vλ is elementary.

2. There exists λ̄ < λ such that crit j0 < crit j1 < · · · < λ̄ and limi<ω crit ji = λ̄ =: λ̄J .

Then we can form the inverse limit

J = j0 ◦ j1 ◦ · · · : Vλ̄ → Vλ

by setting
J(a) = lim

i→ω
(j0 ◦ · · · ◦ ji)(a)

for any a ∈ Vλ̄. J : Vλ̄ → Vλ is elementary, and can be extended to a Σ0-embedding
J∗ : Vλ̄+1 → Vλ+1 by J(A) =

⋃
i J(A ∩ Vλ̄i) for

〈
λ̄i| i < ω

〉
any cofinal sequence in λ̄.

Note that if j : Vλ → Vλ is elementary then it naturally extends to a function j : Vλ+1 →
Vλ+1, which we also refer to as j. Hence we will make statements below such as k(k) = j
where j, k : Vλ → Vλ are elementary, using this convention.

Suppose J = j0 ◦ j1 ◦ · · · is an inverse limit. Then for i < ω we write Ji := ji ◦ ji+1 ◦ · · · ,
the inverse limit obtained by ‘chopping off’ the first i embeddings. For i < ω we write

J (i) := (j0 ◦ · · · ◦ ji)(J)

and for n < ω,
J (i)
n := (j0 ◦ · · · ◦ ji)(Jn), j(i)

n := (j0 ◦ · · · ◦ ji)(jn).

When indexing inverse limits as 〈Jm|m < ω〉 for instance, we will combine our notations as
in

Jm,(i)n = (jm0 ◦ · · · jmi )(Jmn ).
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We can also rewrite J in the following useful ways:

J = j0 ◦ j1 ◦ · · · = · · · (j0 ◦ j1)(j2) ◦ j0(j1) ◦ j0

= · · · j(1)
2 ◦ j

(0)
1 ◦ j0

and

J = j0 ◦ J1 = j0(J1) ◦ j0 = J
(0)
1 ◦ j0

= (j0 ◦ · · · ◦ ji−1)(Ji) ◦ j0 ◦ · · · ◦ ji−1 = J
(i−1)
i ◦ j0 ◦ · · · ◦ ji−1

for any i > 0. Hence we can view an inverse limit J as a direct limit.
We let E be the set of inverse limits. So

E = {(J, 〈ji| i < ω〉)| ∀i < ω(ji : Vλ → Vλ is elementary), crit (j0) < crit (j1) < · · · ,
and J = j0 ◦ j1 ◦ · · · : Vλ̄J → Vλ is elementary}.

This is a slightly larger collection than is defined in [4], and it has the added benefit of being
closed in the natural sense, which we will use to our advantage below.

We will many times be sloppy and refer to an inverse limit as ‘J ’, ‘(J,~j)’ or ‘(J, 〈ji〉)’
instead of ‘(J, 〈ji| i < ω〉)’.

Define

Eα = {(J,~j) ∈ E| ∀i < ω (ji extends to an elementary embedding Lα(Vλ+1)→ Lα(Vλ+1))}.

We say that α is good if every element of Lα(Vλ+1) is definable over Lα(Vλ+1) from elements
of Vλ+1. Note that the good ordinals are cofinal in Θ.

Lemma 1 (Laver). Suppose there exists an elementary embedding

j : Lα+1(Vλ+1)→ Lα+1(Vλ+1)

where α is good. Then Eα 6= ∅. In fact for any a ∈ Vλ+1 there is (K,~k) ∈ Eα such that
a ∈ rngK.

Lemma 2 (Laver). Suppose (J,~j) ∈ Eα+1 for α good, ā ∈ Vλ̄J+1, and b ∈ Vλ+1. Then there

is (K,~k) ∈ Eα such that λ̄J = λ̄K,

K(ā) = J(ā) and b ∈ rngK.

An important property of inverse limits is to what extend they extend beyond Vλ+1 (see
[4] and [3]), and we will use such extensions below. However, in the next section we will
consider a different type of extension, where we use inverse limits more as operators than
embeddings. With that in mind we make the following definition.
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Definition 3. For α < Θ set

Eeα = {(J,~j)| (J, 〈ji � Vλ| i < ω〉) ∈ E ,∀i(ji : Lα(Vλ+1)→ Lα(Vλ+1))}.

Suppose that (J,~j) ∈ Eeα. Then we say that a ∈ Lα(Vλ+1) is in the extended range of J if for
all i < ω, a ∈ rng (j0 ◦ · · · ◦ ji).

Definition 4. Suppose
(J, 〈ji〉), (K, 〈ki〉) ∈ E .

Then we say that K is a limit root of J if there is n < ω such that λ̄J = λ̄K and

∀i < n (ki = ji) and ∀i ≥ n (ki(ki) = ji).

We say K is an n-close limit root of J if n witnesses that K is a limit root of J . We also
say that K and J agree up to n if for all i < n, ji = ki.

Also for j : Vλ+1 → Vλ+1 elementary and (K,~k) ∈ E we say that K is a limit root of j if
for all i < ω, ki(ki) = j and for all n < i, kn ∈ rng ki.

A basic fact which we will use repeatedly below without comment is the following.

Lemma 5. Suppose j, k : Vλ → Vλ are elementary and k(k) = j. Then if a ∈ Vλ+1 is such
that a ∈ rng k, then k(a) = j(a).

Proof. Suppose that 〈κi| i < ω〉 is increasing cofinal in λ and for all i < ω, κi ∈ rng k. It is
enough to see that for all i < ω that k(a∩Vκi) = j(a∩Vκi), and for this it is enough to show
the lemma holds for a ∈ Vλ arbitrary. Hence we calculate for k(ā) = a,

k(a) = k(k(ā)) = k(k � Vα(ā)) = j � Vk(α)(k(ā)) = j(a)

where α < λ is large enough. Hence the lemma follows.

2 Inverse limit operators

In this section we consider a kind of ‘naive extension’ of an inverse limit. These extensions
are well-defined on elements which are fixed by iterates of j, and they are therefore useful
in working with Mω, the ωth iterate of L(Vλ+1) by j. We prove various properties of these
extensions that will be useful in the proofs of Theorems 16 and 19.

We first fix some notation. Fix j : L(Vλ+1)→ L(Vλ+1) elementary and iterable and let

j0,ω : L(Vλ+1)→Mω

be the embedding into the ωth iterate of L(Vλ+1) by j. Similarly define jn,ω. Suppose that

(K,~k) ∈ Eeα for some α is a limit root of j. We put

Kext(a) = lim
i→ω

(k0 ◦ · · · ◦ ki)(a)
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if this limit exists (in the sense that for all large enough i, ki(a) = a) and we put

K∗(a) = lim
i→ω

(k0 ◦ · · · ◦ ki)−1(a)

if this limit exists (in a similar sense). Furthermore we use the convention that if β′ < critK
and b = 〈bβ| β < β′〉 is a sequence such that for all β < β′, Kext(bβ) exists, then

Kext(b) =
〈
Kext(bβ)| β < β′

〉
.

We make a similar convention with K∗.
We first show some calculations involving Kext and K∗ as they relate to Mω, the ωth

iterate of L(Vλ+1) by j.
The first basic fact to keep in mind is the following.

Lemma 6. Suppose that a ∈ Lα(Vλ+1) for α < Θ. Then j(j0,ω(a)) = j0,ω(a). Also if α is
a good limit ordinal such that j0,ω(α) = α, k : Lα+1(Vλ+1)→ Lα+1(Vλ+1) is elementary, and
k(k � Vλ) = j � Vλ, then we have

a ∈ rng k ⇒ k(j0,ω(a)) = j0,ω(a).

Proof. For the first part we do the following calculation,

j(j0,ω(a)) = j(j0,ω � Lα(Vλ+1)(a)) = j1,ω � Lj(α)(Vλ+1)(j(a)) = j0,ω(a).

The second part follows by noticing that since j0,ω(α) = α, for arbitrarily large β < α,
j0,ω � Lβ(Vλ+1) ∈ rng k. And hence j0,ω(a) ∈ rng k, which implies that

k(j0,ω(a)) = j(j0,ω(a)) = j0,ω(a),

which is what we wanted.

Lemma 7. Suppose that (K,~k) ∈ Eeα+1 for some good limit α is an inverse limit root of j,
and j0,ω(α) = α. Let a ∈ Lα(Vλ+1) and assume that for all i < ω, a ∈ rng ki. Then for all i,
a ∈ rng k0 ◦ · · · ◦ ki, and

Kext(j0,ω(a)) = K∗(j0,ω(a)) = j0,ω(a).

Proof. First, the fact that for all i, a ∈ rng k0 ◦ · · · ◦ ki follows from the definition of an
inverse limit root, the fact that α is good and (K,~k) ∈ Eeα+1. Namely, for all i, we have that

a, k0 � Vλ, · · · , ki−1 � Vλ ∈ rng ki.

And hence we must have that (k0 ◦ · · · ki−1)−1(a) ∈ rng ki by induction.
Now to see the latter part of the lemma, we have by Lemma 6

K∗(j0,ω(a)) = lim
n→ω

(k0 ◦ · · · ◦ kn)−1(j0,ω(a))

= lim
n→ω

(j ◦ · · · ◦ j)−1(j0,ω(a)) = j0,ω(a).

And this is what we wanted. Similarly we have Kext(j0,ω(a)) = j0,ω(a).
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We now prove an important lemma which shows how K∗ acts on sequences of elements
of Mω. This fact is especially important below when we consider generics over Mω such as
the critical sequence of j.

Lemma 8. Suppose that (K,~k) ∈ Eeα+1 for some good limit α is an inverse limit root of j,
and j0,ω(α) = α. Let Mω be the ωth iterate of L(Vλ+1) by j. Then K∗ has the property that

K∗ � (Mω)ω : (Mω)ω ∩
⋂
i<ω

rng ki → (j0,ω[Lα(Vλ+1)])ω.

Furthermore we have that for all a ∈ (Mω)ω ∩
⋂
i<ω rng ki,

Kext(K∗(a)) = a.

Proof. Suppose that

fω ∈ (Mω)ω ∩
⋂
i<ω

rng ki.

Then for all n < ω there is an in such that fω � n = jinω(fn) for some fn ∈ Lα(Vλ+1). Clearly
fn ∈

⋂
i<ω rng ki. Now we calculate:

K∗(fω � n) = K∗(jinω(fn))

= lim
m→ω

(k0 ◦ · · · ◦ km)−1(jinω(fn))

= lim
m→ω

(kin ◦ · · · ◦ km)−1(j0ω((k0 ◦ · · · ◦ kin−1)−1(fn)))

= j0ω((k0 ◦ · · · ◦ kin−1)−1(fn)),

where for the third equality we have applied the first in-many embeddings and for the fourth
equality we used Lemma 7. And since this holds for any n < ω, we have that

K∗(f) ∈ j0,ω[Lα(Vλ+1)]ω,

which is what we wanted for the first part of the lemma.
The second part of the lemma follows by basically the same calculation as above, but

performed in reverse, applying Lemma 7 once again.

We need the following technical lemma involving Kext and the direct limit form of K in
order to prove Lemma 10. First define for κ an ordinal

Fκ(j) = {a ∈ Lκ(Vλ+1)| j(a) = a}

and let, for j(n) the nth iterate of j,

Fωκ (j) =
⋃
n<ω

Fκ(j(n)).

Set Nj(a) to be the least n such that j(n)(a) = a if it exists. This lemma shows how K∗ acts
on elements of Fωκ (j).
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Lemma 9. Suppose that a ∈ Fωκ (j) for some κ < Θ good. Then for any (K,~k) ∈ Eeκ+1 a
limit root of j such that for all i < ω, a ∈ rng ki, we have that a ∈ rngKext. In particular,
let

k0(a0) = a, k1(a1) = a0, . . . .

Then there exists an m (in fact m = Nj(a) works) such that for all n ≥ m, an = am.

Furthermore, for such m we have that for all n ≥ m, k
(n−1)
n (a) = a.

Proof. Let m be such that j(m−1)(a) = a. We prove by induction that for n ≥ m we have
kn(an) = an. First suppose that m = 1. Then j(a) = a. We have that

j(a) = a⇒ k0(k0)(a) = a⇒ k0(a0) = a0.

And hence a0 = a. The fact that kn(an) = an follows by induction.
Now suppose that m > 1. Assume by induction that we have proved the result for all

m′ < m. Then we have for n = m− 1

j(n)(a) = a⇒ (k0(k0))(n)(a) = a⇒ (k0)(n)(a0) = a0 ⇒ j(n−1)(a0) = a0.

And then using the induction hypothesis on a0 and 〈ki| i ≥ 1〉 we have the first result.
To see the second result, simply note that am−1 = km(am) = am, and hence

km(am) = am ⇒ km(am−1) = am−1 ⇒
k(m−1)
m ((k0 ◦ · · · ◦ km−1)(am−1)) = (k0 ◦ · · · ◦ km−1)(am−1)⇒
k(m−1)
m (a) = a,

for any m ≥ n, for n satisfying the first part of the conclusion (where a−1 = a).

The next lemma shows how j0,ω andKext commute with one another. Recall the definition
of Nj(a) as the least iterate of j which fixes a.

Lemma 10. Suppose that a ∈ Fωκ (j) for some good κ a limit such that j0,ω(κ) = κ. Then

for any (K,~k) ∈ Eeκ+1 such that a ∈ rngKext, we have that

Kext(j0,ω(K∗(a))) = jNj(a),ω(a).

Proof. To see this, let
k0(a0) = a, k1(a1) = a0, k2(a2) = a1, . . .

and let n be large enough so that for all m ≥ n, km(an) = an. Then we have that K∗(a) = an.
Hence we have that for m ≥ n, km(j0,ω(an)) = j0,ω(an). So

Kext(j0,ω(K∗(a))) = (k0 ◦ k1 ◦ · · · ◦ kn−1)(j0,ω((k0 ◦ k1 ◦ · · · kn−1)−1(a))) = jn,ω(a),

which holds for n = Nj(a) in particular.
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The next lemma gives more information on how j0,ω and Kext commute.

Lemma 11. Suppose that (K,~k) ∈ Eeα+1 for some good limit α is an inverse limit root of
j, and j0,ω(α) = α. Let Mω be the ωth iterate of L(Vλ+1) by j. Suppose that a ∈ Mω,
a ∈ domK∗ and

a ∈ Fωα (j0,ω(j))Mω .

Then we have that j−1
0,ω(K∗(a)) ∈ domKext.

Proof. To see this, let ā and n be such that jn,ω(ā) = a. Then by elementarity we have that
ā ∈ Fωα (j). Furthermore since a ∈ domK∗, ā ∈ domK∗. So for ā∗ = K∗(ā), we have that
ā∗ ∈ domKext. But j−1

0,ω(K∗(a)) = ā∗ by Lemma 9, since

K∗(a) = K∗(jn,ω(ā)) = j0,ω((k0 ◦ · · · ◦ kn−1)−1(ā))

and
ā∗ = K∗(ā) = (k0 ◦ · · · ◦ kn−1)−1(ā).

Hence we have the lemma.

Finally, we show how j0,ω and Kext commute on functions.

Lemma 12. Let κ be a good limit ordinal and j0,ω(κ) = κ. Suppose that f ∈ Lκ(Vλ+1) is a

function such that j(f) = f and f ⊆ Fωκ (j). Then for any a ∈ domf and (K,~k) ∈ Eeκ+1 a
limit root of j such that a, f ∈ rngKext, we have that

j0,ω(f)(jNj(a),ω(a)) = Kext(j0,ω(K∗(f(a)))).

Proof. This follows by a calculation since Kext(f) = K∗(f) = f implies that

K∗(f(a)) = f(K∗(a))

and

Kext(j0,ω(f(K∗(a)))) = Kext(j0,ω(f)(j0,ω(K∗(a))))

= j0,ω(f)(Kext(j0,ω(K∗(a))))

= j0,ω(f)(jNj(a),ω(a)),

which completes the proof.

3 j-Suslin representations

We introduce some terminology for tree representations of subsets of Vλ+1. These tree
representations seem rather similar to Suslin representations, and so we give them names
which indicate this fact.
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For this section we fix j : L(Vλ+1)→ L(Vλ+1) an iterable elementary embedding witness-
ing I0 at λ and let

j0,ω : L(Vλ+1)→Mω

be the embedding into the ωth iterate of L(Vλ+1) by j, as in the previous section. For n < ω,
let j(n) denote the nth iterate of j. Also define

E[j] = {k : Vλ → Vλ| ∃n,m(k(n) = j(m))}.

Note that j(E[j]) = E[j] and that for κ < Θ good, Fωκ (j) is definable from κ and E[j] in
L(Vλ+1). Hence if j(κ) = κ then j(Fωκ (j)) = Fωκ (j).

Definition 13. For ~κ = 〈κi| i < ω〉 increasing below λ, we let W~κ be the set of sequences s
such that

1. for some n < ω, |s| = n and for all i < n, s(i) ⊆ Vκi ,

2. if i ≤ m < |s| then s(i) = s(m) ∩ Vκi .

Also let W~κ
n = {s ∈ W ~κ| |s| = n} and

W~κ
ω = {x ∈ V ω

λ | ∀n < ω(x � n ∈ W~κ
n)}.

In this context if x ∈ Vλ+1, we set

x̂ = x̂~κ = 〈x ∩ Vκn|n < ω〉 ∈ W~κ
ω .

Suppose that κ < Θ. Let X ⊆ Vλ+1. We say that T is a (j, κ)-Suslin representation for
X if for some sequence 〈κi| i < ω〉 increasing and cofinal in λ the following hold.

1. T is a (height ω) tree on Vλ ×Fωκ (j) such that for all (s, a) ∈ T , s ∈ W~κ
|s|.

2. For all s ∈ W~κ, Ts ∈ FωΘ(j).

3. For all x ∈ Vλ+1, x ∈ X iff Tx̂ is illfounded.

We say that X is j-Suslin if for some κ, X has a (j, κ)-Suslin representation.

Remark 14. Note that if we did not require Ts be in FωΘ(j), there would be a seemingly
trivial such representation by considering the pointwise image of X under j0ω. On the other
hand, we will only be obtaining results from the uniform version of this definition which we
make below, and hence it is not necessarily clear that our definition of (j, κ)-Suslin is strong
enough to obtain a useful representation for subsets of Vλ+1.

We say that T is a uniform (j, κ)-Suslin representation for X if the following hold.

1. T is a function on [λ]<ω such that for all s ∈ [λ]ω, if T (s) is the tree whose nth level is
given by T (s � n), then T (s) is a (height ω) tree on Vλ ×Fωκ (j).
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2. For all s ∈ [λ]ω such that s is cofinal in λ, T (s) is a (j, κ)-Suslin representation for X
(as witnessed by the sequence s).

Remark 15. Our definition of a j-Suslin representation was heavily motivated by the defini-
tion of a U(j)-representation[10]. Namely, it can be viewed roughly as a U(j)-representation
where we have forgotten about the measures. This is not strictly true however, and it is not
at all clear that U(j)-representations give j-Suslin representations directly. On the other
hand j-Suslin representations are motivated by Suslin representations since (for iterable j),
κ ⊆ Fωκ (j).

We now give some consequences of the existence of uniform j-Suslin representations.
First we show that if a set has a uniform j-Suslin representation, then this implies it has
a nonempty intersection with Mω[~κ] for ~κ the critical sequence of j. The following two
theorems generalize this result slightly to allow for parameters in Mω[~κ] and for replacing ~κ
with other suitable generics. The proof of Theorem 16 is very similar to the proofs of the
latter two theorems, although Theorem 19 is what we will actually apply below.

Theorem 16. Let j : L(Vλ+1)→ L(Vλ+1) be an iterable I0 embedding and let Mω be the ωth
iterate of L(Vλ+1) by j. Suppose that T ∈ LΘ(Vλ+1) is a uniform (j, κ)-Suslin representation
for X ⊆ Vλ+1, X 6= ∅, and for some n, j(n)(T ) = T . Then for ~κ the critical sequence of j,
we have that

Mω[~κ] ∩X 6= ∅.
Proof. Assume without loss of generality that j(T ) = T and fix κ good such that T ∈
Lκ(Vλ+1) and j(κ) = κ. Let j0,ω : L(Vλ+1) → Mω be the embedding into the ωth iterate
given by j. Let j0,ω(T ) = T ω. And let T ωλ = T ω � [λ]<ω. Now let T ∗ = T ωλ (~κ). Note that we
have T ∗ ∈Mω[~κ].

Claim 17. T ∗ is illfounded.

Proof. To see this, note that since X 6= ∅, T (~κ) is illfounded. So let b = 〈bi| i < ω〉 be a
branch through T (~κ). Now, using Lemma 1, let

(K, 〈ki| i < ω〉) ∈ Eeκ+1

be a limit root of j such that b, T,~κ ∈ rngKext. Let b̄ and ~δ be such that Kext(b̄) = b and

Kext(~δ) = ~κ. Note that we are using here that b, ~κ ∈ [Fωκ (j)]ω. Now we have that since
j(T ) = T ,

K∗(T (κ0, . . . , κn−1)) = T (δ0, . . . , δn−1).

Hence we have that b̄ is a branch through T (~δ) by elementarity. Applying j0,ω to this

fact we have that j0,ω(b̄) is a branch through j0,ω(T (~δ)). We claim that the tree whose nth

level is Kext(j0,ω(T (~δ � n))) is exactly T ∗. But this follows from Lemma 12 which implies

j0,ω(T )(~κ � n) = j0,ω(T )(jNj(~κ�n),ω(~κ � n))

= Kext(j0,ω(K∗(T (~κ � n))))

= Kext(j0,ω(T (~δ � n))).
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And since b̄ ∈ domKext, by Lemma 7 we have j0,ω(b̄) ∈ domKext. Hence by applying Kext

we have that Kext(j0,ω(b̄)) is a branch through T ωλ (~κ) = T ∗, which is therefore illfounded.

Since T ∗ is illfounded, by absoluteness there is a branch b∗ = (x̂, aω) in Mω[~κ]. We claim
that x ∈ X. This follows basically the same as above, by applying Kext ◦ j−1

0,ω ◦K∗. To see
this let (K, 〈ki| i < ω〉) ∈ Eeκ+1 be a limit root of j such that b, T,~κ, x, a ∈ rngKext. Let āω,

y, and ~δ be such that Kext(āω) = aω, Kext(~δ) = ~κ and Kext(ŷ~δ) = x̂~κ. Note that āω exists
since for any n < ω, aω � n ∈ Mω, and also note that āω ∈ rng j0,ω. So let ā = j−1

0,ω(āω) and
let, using Lemma 11, a = Kext(ā). We have that the tree whose nth level is

Kext(j−1
0,ω(K∗(T ω(~κ � n))))

is exactly T (~κ) since

Kext(j−1
0,ω(K∗(T ω(~κ � n)))) = Kext(j−1

0,ω(T ω(~δ � n)))

= Kext(T (~δ � n)) = T (~κ � n).

And hence

Kext(j−1
0,ω(K∗(x̂~κ, a

ω))) = (Kext(j−1
0,ω(ŷ~δ)), K

ext(j−1
0,ω(āω)))

= (Kext(ŷ~δ), K
ext(ā))

= (x̂~κ, a)

is a branch through T (~κ). So x ∈ X since T is a uniform (j, κ)-Suslin representation for X.
So x ∈Mω[~κ] ∩X as desired.

The next theorem generalizes the above result to allow parameters in Mω[~κ]∩Vλ+1. This
is especially useful since it is unclear if uniform j-Suslin representations can be obtained if
there is a parameter for defining the set in Vλ+1 which is not fixed by an iterate of j.

Theorem 18. Let j : L(Vλ+1)→ L(Vλ+1) be an iterable I0 embedding and let Mω be the ωth
iterate of L(Vλ+1) by j. Let ~κ be the critical sequence of j. Suppose that T ∈ L(Vλ+1) is a
uniform (j, κ)-Suslin representation for X ⊆ {a× b| a ∈ [λ]ω, b ∈ Vλ+1}. Write for a ∈ Vλ+1

Xa = {b ∈ Vλ+1| a× b ∈ X}.

Also assume X~κ 6= ∅, and T ∈ Fωκ (j). Then

Mω[~κ] ∩X~κ 6= ∅.

The proof is exactly the same as the previous proof, replacing for instance T ωλ (~κ) by
T ωλ (~κ)~κ. Note that since T ∈ Fωκ (j) that for any n < ω, T (~κ � n)~κ�n ∈ Fωκ (j). Instead of
giving the details we will prove the next theorem which extends both of the above theorems
to a collection of generics g ∈ V , instead of just ~κ.
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Theorem 19. Let j : L(Vλ+1)→ L(Vλ+1) be an iterable I0 embedding and let Mω be the ωth
iterate of L(Vλ+1) by j. Suppose g ∈ V is P-generic over Mω for P ∈Mω. Also assume that

cof(λ)Mω [g] = ω.

Suppose that T ∈ L(Vλ+1) is a uniform (j, κ)-Suslin representation for

X ⊆ {a× b| a ∈ Vλ+1, b ∈ Vλ+1},

and write for a ∈ Vλ+1

Xa = {b ∈ Vλ+1| a× b ∈ X}.
Let x ∈Mω[g] ∩ Vλ+1. Assume Xx 6= ∅, and T ∈ Fωκ (j). Then

Mω[g] ∩Xx 6= ∅.

Proof. The proof is again very similar to the proof of Theorem 16. We give the details since
this is the theorem we shall actually use below.

Assume without loss of generality that j(T ) = T and fix κ good such that T ∈ Lκ(Vλ+1)
and j(κ) = κ. Let j0,ω : L(Vλ+1) → Mω be the embedding into the ωth iterate given by j.
Let j0,ω(T ) = T ω. And let T ωλ = T ω � [λ]<ω.

Let g ∈ V be P-generic overMω for P ∈Mω. Assume cof(λ)Mω [g] = ω and x ∈Mω[g]∩Vλ+1

is such that Xx 6= ∅. Let ~κ ∈ Mω[g] be increasing cofinal in λ. Now let T ∗ = T ωλ (~κ)x̂. Note
that we have T ∗ ∈Mω[g].

Claim 20. T ∗ is illfounded.

Proof. To see this, note that since Xx 6= ∅, T (~κ)x̂ is illfounded. So let b = 〈bi| i < ω〉 be a
branch through T (~κ)x̂. Now, using Lemma 1, let

(K, 〈ki| i < ω〉) ∈ Eeκ+1

be a limit root of j such that b, T,~κ, x ∈ rngKext. Let b̄, ~δ, and y ∈ Vλ̄K+1 be such that

Kext(b̄) = b, Kext(~δ) = ~κ, and K(y) = x. Now we have that since j(T ) = T ,

K∗(T (κ0, . . . , κn−1)x̂�n) = T (δ0, . . . , δn−1)ŷ�n.

Hence we have that b̄ is a branch through T (~δ)ŷ by elementarity. Applying j0,ω to this

fact we have that j0,ω(b̄) is a branch through j0,ω(T (~δ)ŷ). We claim that the tree whose nth

level is Kext(j0,ω(T (~δ � n)ŷ�n)) is exactly T ∗. But this follows from Lemma 12 which implies

j0,ω(T )(~κ � n)x̂�n = j0,ω(T )(jNj(~κ�n),ω(~κ � n))jNj(~κ�n),ω(x̂�n)

= Kext(j0,ω(K∗(T (~κ � n)x̂�n)))

= Kext(j0,ω(T (~δ � n)ŷ�n)).

Hence by applying Kext we have that Kext(j0,ω(b̄)) is a branch through T ωλ (~κ)x̂ = T ∗,
which is therefore illfounded.
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Since T ∗ is illfounded, by absoluteness there is a branch b∗ = (ẑ, aω) in Mω[g]. We claim
that z ∈ X. We show this by applying Kext ◦ j−1

0,ω ◦K∗. To see this let (K, 〈ki| i < ω〉) ∈ Eeκ+1

be a limit root of j such that b, T,~κ, z, x, aω ∈ rngKext. Let āω, z′, y, and ~δ be such that
Kext(āω) = aω, Kext(z′) = z, K(y) = x, and Kext(~δ) = ~κ (note that āω again exists because
for all n < ω, aω � n ∈Mω. As above we have that the tree whose nth level is

Kext(j−1
0,ω(K∗(T ω(~κ � n)x̂�n)))

is exactly T (~κ)x̂. And hence

Kext(j−1
0,ω(K∗(ẑ~κ, a

ω))) = (Kext(j−1
0,ω(ẑ′~δ)), K

ext(j−1
0,ω(K∗(aω))))

= (Kext(ẑ′~δ), K
ext(j−1

0,ω(K∗(aω))))

= (ẑ~κ, K
ext(j−1

0,ω(K∗(aω))))

is a branch through T (~κ)x̂, and hence z ∈ Xx since T is a uniform (j, κ)-Suslin representation
for X. So z ∈Mω[g] ∩Xx as desired.

4 Generic absoluteness from j-Suslin representations

We now come to our generic absoluteness results which follow from the existence of uniform
j-Suslin representations. Based on Theorem 18, we make the following conjecture about the
existence of uniform j-Suslin representations.

Definition 21. Suppose Y ⊆ Vλ+1 and j : L(Y, Vλ+1)→ L(Y, Vλ+1) is an I0(Y ) elementary
embedding. We say that the uniform j-Suslin conjecture holds in L(Y, Vλ+1) if the following
holds. Suppose X ⊆ Vλ+1, X ∈ L(Y, Vλ+1) is such that there is an a ∈ Fω0 (j) and a δ such
that X is definable over Lδ(Vλ+1) from a (so X ∈ FωΘ(j)). Then for some κ < Θ there exists
a uniform (j, κ)-Suslin representation T for X such that T ∈ FωΘ(j).

The following is proved in [2].

Theorem 22. Suppose that I0 holds at λ. Then the uniform j-Suslin conjecture holds in
L(Vλ+1). In fact if I#

0 holds at λ then the uniform j-Suslin conjecture holds in L(V #
λ+1).

This result together with the techniques of the previous section allow us to obtain the
following generic absoluteness result.

Theorem 23. Suppose that I0 holds at λ, j : L(Vλ+1) → L(Vλ+1) is elementary. Then for
~κ the critical sequence of j, if α < Θ is good then for some ᾱ < λ there is an elementary
embedding

Lᾱ(Mω[~κ] ∩ Vλ+1)→ Lα(Vλ+1).
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Proof. The theorem follows from Theorem 19. To see this, assume that a ∈ Mω[~κ] ∩ Vλ+1

and ψ is such that X ⊆ Vλ+1 is definable for some good κ from a over Lκ(Vλ+1) by a formula
φ. So

x ∈ X ⇐⇒ Lκ(Vλ+1) |= φ(x, a).

Now let X̃ be defined by

(b, x) ∈ X̃ ⇐⇒ Lκ(Vλ+1) |= φ(x, b) ∧ x ∈ Vλ+1.

We have that X̃ is definable over Lκ(Vλ+1) and that X̃a = X. By the uniform j-Suslin
conjecture we have that X̃ is uniformly (j, κ′)- Suslin for some κ′. And hence by Theorem
19 we have that

X̃a ∩Mω[~κ] = X ∩Mω[~κ] 6= ∅.

Now fix κ < Θ good and let X ⊆ Vλ+1 code Lκ(Vλ+1) in the natural way. Then we have
that Y ⊆ Vλ+1 is definable from a ∈ Vλ+1 over Lκ(Vλ+1) iff Y ⊆ Vλ+1 is definable from a over
(Vλ+1, X). But by what we showed above, if Y ⊆ Vλ+1, Y 6= ∅ is definable from a parameter
a ∈Mω[~κ] ∩ Vλ+1 over (Vλ+1, X), then Y ∩Mω[~κ] 6= ∅. Hence we have by Tarski-Vaught

(Mω[~κ] ∩ Vλ+1, X ∩Mω[~κ]) ≺ (Vλ+1, X).

Let X̄ = X ∩Mω[~κ]. Then by elementarity, X̄ codes Lᾱ(Mω[~κ] ∩ Vλ+1) for some ᾱ and we
have an elementary embedding

Lᾱ(Mω[~κ] ∩ Vλ+1)→ Lα(Vλ+1),

which is what we wanted.

The exact same proof with ~κ replaced by g shows the following.

Theorem 24. Suppose that I0 holds at λ, as witnessed by

j : L(Vλ+1)→ L(Vλ+1).

Suppose g ∈ V is P-generic over Mω where P ∈ Mω. Also assume that cof(λ)Mω [g] = ω.
Then if α < Θ is good, for some ᾱ < λ there is an elementary embedding

Lᾱ(Mω[g] ∩ Vλ+1)→ Lα(Vλ+1).

Note that this theorem gives a slightly stronger version of generic absoluteness than that
found in [10]. In particular we do not require that P ∈ j0,ω(Vλ). This is potentially a
significant strengthening as for instance we cannot have j ∈ Mω[g] where g is Mω-generic
for a forcing P ∈ j0,ω(Vλ), since P is a small forcing in Mω relative to j0,ω(λ). This reasoning
however does not apply to forcings in Mω.

This theorem can also be generalized beyond L(Vλ+1) by increasing the large cardinal
assumption, using Theorem 22 again.
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Theorem 25. Suppose that j : L(V #
λ+1) → L(V #

λ+1) is an I#
0 embedding, and g ∈ V is

P-generic over Mω, the ωth iterate of j, where P ∈ Mω. Also assume that cof(λ)Mω [g] = ω.
Then for some ᾱ < λ there is an elementary embedding

Lᾱ((Mω[g] ∩ Vλ+1)#,Mω[g] ∩ Vλ+1)→ Lα(V #
λ+1, Vλ+1).

We close by mentioning a couple consequences of the theorems in this section. First by
results independently shown by Dimonte-Friedman [5] and Woodin, we have the following
theorem on the failure of the singular cardinal hypothesis at λ. Note that although [5] deals
principally with the case of I1, the same methods carry over to I0 once the above generic
absoluteness result is shown.

Theorem 26. Assume that there is an elementary embedding j : L(V #
λ+1)→ L(V #

λ+1). Then
it is consistent that I0 holds at λ and the singular cardinal hypothesis fails at λ.

In addition, by a theorem of Shi-Woodin [9] the above results give a proof (alternative to
that found in [1]) of the λ-splitting perfect set property for all subsets of Vλ+1. in L(Vλ+1)
We refer the reader [10] Section 9 for more applications of the above generic absoluteness
theorem.
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