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Abstract

We trace some of the history of results which follow from the existence of very large
cardinals. In particular we concentrate on the axiom Iy and its implications for the
structure of the inner model L(Vy41).

1 Introduction

The large cardinal hierarchy is a bedrock of modern set theory as the key measure against
which seemingly every other axiom in mathematics can be compared in terms of consistency
strength.! In this article we explore some of the large cardinals axioms which exist at the
edge of this hierarchy: what we call ‘very large cardinals’. Our goals in this study are both
to identify consequences of the existence of very large cardinals and to understand how these
consequences help us understand the structure and extent of the large cardinal hierarchy
itself.

The central focus of our study is the axiom [, and the structure L(V);1). This structure
was first defined and studied by H. Woodin in the 1980’s in unpublished work in order to more
fully understand how the structure of L(R) is influenced by large cardinals. Surprisingly,
similarities between the structure of L(V)1) and the structure of L(R) abound under large
cardinal assumptions, and much of this article will be devoted to recounting what is presently
understood about similarities and differences in their structure.

Beyond understanding the structure of very large cardinals by themselves, recent work
has also returned to Woodin’s original motivation and found increasingly deep structural
connections between L(V);1) and models of determinacy. These results give a new method
for obtaining strong models of determinacy axioms, and could potentially help motivate and
analyze very strong determinacy axioms. They also give a picture of the interaction between
large cardinals and determinacy axioms on a global scale.

We hope to paint a picture of intricate structure at the level of L(V),1) which gives
some evidence of the consistency of the axiom Iy. Optimistically, the analysis of L(V)y1)
extends well beyond this level, and hopefully, if our analysis becomes detailed enough, where

1See [12] for a general history of large cardinals



this structure breaks down and inconsistency occurs will become more clear. At this point,
however, this occurrence is a hope rather than a reality.

The outline of this article is as follows. In Section 2 we discuss Kunen’s Inconsistency
Theorem and the various large cardinals which exist just below this barrier. In Section 3
we look at reflection properties of these cardinals. In Section 4 we look more closely at the
axiom [y and the structural aspects of L(V),1) under Iy. In Section 5 we consider the notion
of an AD-like axiom for L(V),) and various attempts at defining such an axiom. Finally in
Section 6 we briefly consider axioms beyond .

Our proofs are throughout rather sketchy as we focus on key points while trying to avoid
a tidal wave of calculations. Hopefully our brevity will be appreciated by the reader, and,
moreover, the exercise of filling in the appropriate details, in some cases, would perhaps serve
as a fruitful introduction to the subject.

1.1 Set theory conventions

We denote by V,, for a an ordinal the stratification of V according to rank. So Vy =
0, Vagqu = P(V,) and V) = |J,., Vo for A a limit. For a transitive set A, L(A) is the
constructible hierarchy built on top of A. So Lo(A) = A, Lot1(A) = Def(L,(A)) and
LA(A) = Uper La(A) for A a limit. By L(X, A) we mean the constructible hierarchy built
on top of A, with X as a predicate. So Lo(X,A) = A, Lo11(X, A) = Def(L,(A), X N Ly (A))
and L)(X,A) = U, La(X, A) for A a limit.

Suppose that M and N are models of a fragment of set theory. Then j : M — N is an
elementary embedding if for all ¢[xy,...,z,] and a4, ...,a, € M we have that

M E ¢(ay,...,a,) = N E o(j(ar),...,j(an)).

We use the convention that all elementary embeddings are nontrivial, so j # id. And crit (5)
is the least ordinal « such that j(«) > a.

2 Kunen’s Theorem and Rank-into-Rank Embeddings

By far the most common type of large cardinal axiom is the assertion that there is a non-
trivial elementary embedding j of the universe V' into an inner model M. In general, the
more M agrees with V' the stronger the large cardinal. This observation led W. Reinhardt in
1967 to propose the following axiom, called a Reinhardt cardinal: there exists a non-trivial
elementary embedding j : V' — V. The existence of a Reinhardt cardinal is a natural upper
bound of this type of elementary embedding existence axiom, but K. Kunen[15] subsequently
showed that Reinhardt cardinals are inconsistent with the Axiom of Choice.

Theorem 1 (Kunen[15]). (KM?) Suppose that j : V. — M is a non-trivial elementary
embedding. Then M # V.

“Note that Kunen’s theorem in this form is a statement in Kelley-Morse set theory. See [11] for a
discussion of this fact.



In fact he showed the following stronger fact.

Theorem 2 (Kunen). (ZFC) There is no A such that there is a non-trivial elementary
embedding
J: Vaga — Vo

This theorem follows immediately from the proof of Theorem 23 below and Solovay’s
Theorem on splitting stationary sets under ZFC. Several additional proofs can be found in
[12].

A key point, and the starting point for the analysis of axioms just below this inconsistency;,
is that all known proofs of Kunen’s Theorem require the Axiom of Choice (AC). So, on the
one hand, there is the natural question of whether there can be a (non-trivial) elementary
embedding V), o — V.o under ZF, and on the other hand, in analyzing this possibility, we
must necessarily consider models in which AC fails. This is perhaps the first indication that
such an analysis would have similarities to other non-choice settings, such as the context of
the Axiom of Determinacy (AD).

We now define some of the large cardinals which lie just below this inconsistency. These
elementary embeddings are collectively referred to as ‘rank-into-rank embeddings’. Note
that from now on all elementary embeddings are assumed to be non-trivial.

Definition 3. Let A be an ordinal. We make the following definitions.
1. I3 holds at X if there exists an elementary embedding 7 : V), — V) and A is a limit.

2. Iy holds at X if there exists an elementary embedding j : V' — M such that V, C M
and crit (j) < A

3. Iy holds at X if there exists an elementary embedding 7 : Vi1 — Viy.

4. I,(X) holds at X if there exists an X-elementary embedding j : Vi;1 — Vig1.?

W. H. Woodin defined an axiom called Iy which is even stronger than I; but still below the
level of Reinhardt cardinals. Before introducing this axiom, we mention as motivation that
the existence of an elementary embedding Vy,o — V),s can be weakened by restricting to
certain sets in V1o = P(V);1). This restriction succeeds if we avoid the subsets of V)1 which
the axiom of choice gives us in the proof of Theorem 2. This situation is very reminiscent
of considering regularity properties, such as Lebesgue measurability, of sets of real numbers
in classical descriptive set theory. In that situation the axiom of choice implies that there
are sets of reals which do not satisfy, for instance, Lebesgue measurability. However, by
restricting to only certain sets of reals (such as Borel sets or projective sets) we have a
chance of showing that all such sets have the desired regularity properties. We will see in
Section 4 that this analogy holds to a remarkable extent, and that we can actually achieve
remarkably similar descriptive set-theoretic results in this context.

We now define I and some variations.

3For instance I1(X;) states that there is such a a ¥j-elementary embedding. We use this notation with
a fair amount of liberty but our meaning should always be clear.
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Figure 1: Rank-into-rank embeddings.

Definition 4. 4 Let A and o be ordinals. We make the following definitions.

1. Iy(«) holds at A if there exists an elementary embedding j : Lo (Viy1) — La(Vii1) such
that crit (j) < A and A is a limit.

2. Iy(< «) holds at A if for all § < a, () holds at A.

3. Iy holds at X if there exists an elementary embedding j : L(Vy,1) — L(Vy;1) such that
crit (j) < A.

4. IS% holds at X if there exists an elementary embedding®
J+ LV, V) = LV, Vas)
such that crit (7) < A.

5. Suppose X C Vy;;. We say that X is Icarus or Iy(X) holds if there exists a non-trivial
elementary embedding j : L(X, Viy1) — L(X, Viy1) such that crit (j) < A

We now collect some basic facts about rank-into-rank embeddings and the structure
L(Vyi1).

Proposition 5. Let \ be an ordinal. Then the following hold.

1. (WY = OWHEW) 50 in L(Vaga), AT is reqular.

40ur notation above in (1) and (2) is not standard in the literature, although we shall use it for convenience
in this paper. The terminology in (5) first appeared in [8].
5See [23] for the definition of R* and [8] for the corresponding definition of V)\ﬁl, which is very similar.



2. Suppose that j : Vx — V\ is an elementary embedding. For (k;|i < w) defined by
induction by ko = crit (j) and ki1 = j(k;) fori < w, we have that

lim R; = /\/
<w

where either N =X or N +1 = \.
3. If I3 holds at A then cof(\) = w.
4. Suppose Iy holds at \. Then L(Vy\,1) does not satisfy the axiom of choice.

5. Suppose that 7 : Vy\ — V) is an elementary embedding. Then j has a unique extension
to a Yg-elementary embedding

~

J Vg1 — Vaga

6. If n < w is odd and 7 : Vyy1 — Viyq is Xp-elementary, then j is ¥,.q-elementary
(Martin,).

Proof. To see (1), note that for any ordinal & < A%, there is an x € V)4 which codes an
ordering of A in ordertype o. And hence (A*)V = (A*)E(a+1) since Vi1 C L(Vagy).

To see (2), let lim;, k; = X', and assume towards a contradiction that X' + 2 < A. Note
that j(\') = . And hence j [ Viio @ Viiga — Vigo. But X > crit (j), and hence j [ Vo
is non-trivial and violates Theorem 2.

(3) immediately follows from (2), and (4) follows by Kunen’s Theorem”.

To see (5), define j by j(a) = U,.,a NV, for (A\,|n <w) some increasing cofinal
sequence in A. Then clearly j does not depend on which cofinal sequence was chosen, and it
is a Yg-elementary embedding V.1 — Vii1.

For a proof of (6) see [18]. O

Because of (5), we will use the convention below that j and j are identified. So if
j: Vi — V) is elementary then we will write j(j) for j(j). Note that we have the following
theorem.

Theorem 6 (Laver[18]). If j,k : Vao1 — Vi1 are X,-elementary then j(k) : Vayr — Vi
15 X -elementary.

Hence, conveniently, the set of I;-embeddings acts on itself using the extensions j for
J an [; embedding. This is also true for I3-embeddings. Such facts allow for algebras of
elementary embeddings. We refer the interested reader to [17] and [20] for more on these
algebras.

6(k;|i < w) is referred to as the critical sequence of j.
"Note that the proof of Kunen’s Theorem does not require that j actually be in V.



3 Reflection properties

We will now look at the reflection properties of rank-into-rank embeddings. These reflection
theorems are in a sense harder to achieve than is typically the case with large cardinal
axioms. The reason is that in reflecting a rank-into-rank embedding we not only wish to
decrease the critical point of the embedding, but we wish to decrease A, the first fixed point
of the embedding. The usual arguments for reflecting large cardinals in this case give us
what we will call square roots of our embedding, whereas to reflect the large cardinal by
decreasing \ will generally require more involved arguments, and, in particular, sequences
of embeddings. While this might at first seem like a simple nuisance, the techniques needed
for these reflection results will end up being useful in a wide range of Theorems below.

We concentrate on the following fairly weak form of reflection: we say a large cardinal
axiom LCA1 reflects a large cardinal axiom LCAZ2 if for any A if LCA1 holds at A then LCA2
holds at A and there is A < A such that LCA2 holds at A\. We also write LCA2 < LCAL.
The following theorem summarizes some results on reflection of rank-into-rank embeddings
in the order in which they were proved. These results can be extended to stronger forms
of reflection, such as finding an w-club of X below A at which LCA2 holds. We will discuss
other strengthenings of these results at the end of this section.

Theorem 7. 1. I3 < I, (Gaifman(10], Solovay).
2. I3 < I (iterable) < I;(Xy) = Iy (Martin).
I, < Iy (Woodin[26]).
I(3)) < [1(Ey) < [1(36) < -+ < Iy < Iy(1) (Laver[18]).
I(1) < Iy(w+1) < Iy(A\T) < Iy(A\T +w +1). (Laver[19]?

S v L

I(< AT+ w) < I)(AT +w) and IH(< a4+ w) < ly(a +w) for a the least admissible
ordinal (C. [5]).

7. For a good®, Iy(a+w) holding at X implies that there is A < X and & such that for all
n < w there is an elementary embedding

Lain(Vat1) = Latn(Vas1)
and hence Io(< &+ w) holds at A (C. [5]).19
8 Iy < IF(w) (C. [5]).

8Note that in (5) and (6) we mean that if Io(A* + w 4 1) holds at A then there is a A < X such that
Io(AT) holds at .

% is good if every element of L, (Vyy1) is definable over L, (Vyi1) from an element of V4. The good
ordinals are cofinal in ©, (see [19])

0We state (7) in this manner because for larger « there is no simple definition of a as in the case of
a = AT for instance. So we cannot state the reflection as we do above.



The proofs for (1) and (2) involved taking the wth iterate of an embedding and then
considering the tree of attempts to build an I3 embedding. The proofs of (4)-(7) on the
other hand involved inverse limits of rank-into-rank embeddings, a technique introduced by
Laver that we will describe below.

As mentioned above, these reflection results were shown using sequences of embeddings
(either direct limits or inverse limits) rather than individual embeddings. The usual method
for obtaining reflection from a large cardinal in the case of rank-into-rank embeddings gives
us what we call square roots. The primary method for obtaining such square roots is the
following fact, which we generally refer to as the Square Root Lemma:

Lemma 8. (Martin, Laver) Let o be good. If j : Loat1(Vaig1) — Las1(Vag1) is an ele-
mentary embedding with crit(j) < A, a,b € Vyy1, then there is an elementary embedding
k: Lo(Vai1) — La(Vig1) such that

1Lok(k V) =71W
2. a€rngk
3. j(b) = k(b).

Proof sketch. Apply j to the statement of the lemma and then show that j | La(Vii1)
witnesses the result. The fact that « is good implies that j [ Lo (Vai1) € Lat1(Vigr)- O

Of course a could be replaced by a finite tuple aq, . .., a, and similarly for b. In fact these
can replaced by tuples of length < crit (7).

If k(k [ V)) =j | Vi then we say that k is a square root of j. The Square Root Lemma
has many varitions, as for instance Laver included the fact that for a given a < crit (j),
k has the property that a < crit (k) < crit (j). Notice however, that we can require that
a € rngk. And this implies that o < crit (k) < crit (j) because k(crit (k)) = crit (j) implies
crit (k) < crit (j), and a < crit (k) since for any 8 € [crit (k), crit (7)), 0 ¢ rmgk. In fact,
property (3) in the statement of the Square Root Lemma is in fact redundant, by property
(2) by the following proposition.

Proposition 9. Suppose that j, k : V\ — V) and k is a square root of j. Then the following
hold.

1. crit(k) < crit(j) and k(crit(k)) = crit(j).
2. If a € Va1 and a € gk, then k(a) = j(a).
3. For all o < A, k(a) > j(a).
Proof. (1) follows by computing!!
k(crit (k)) = crit (k(k)) = crit (5).

' Note that we are being careful only to use elementarity below A. That is, we are using properties of k
which are properties of k | V,, for large enough a < A.



Similarly, for (2), if k(b) = a, then, informally,?

k(a) = k(k(b)) = k(F)(k(D)) = j(a).

For (3), suppose not, and let « be least such that k(a) < j(«). Then using the fact that
« is least such, j(a) must be in the range of k, since it is the least ordinal above k(«) in the
range of j. Hence, a € rngk. But then k(«) = j(«) by (2), a contradiction. O

We now come to a key application of the Square Root Lemma: the construction of inverse
limits of rank-into-rank embeddings. These structures are key to proving reflection results
for rank-into-rank embeddings, and they naturally arise from the Square Root Lemma. In
fact, an inverse limit can be constructed simply as the result of w-many applications of the
Square Root Lemma for a fixed j, where at each stage we choose k; such that everything in
the construction so far is required to be in the range of k;.

Definition 10 (Laver). We say that (J, (j;| i < w)) = (J,7) is an inverse limit if the following
hold.

1. For all i < w, j; : V), — V) is elementary.
2. crit (jo) < crit (j1) < -+ < A and lim;, crit (j;) = Ay < A.
3. J: V5, — Vi is given by
J(a) =1m(jo o jr oo ji)(a)
for any a € V5.

We write J = jgojio--- to denote an inverse limit. For n < w, we write J,, = j,0Jp110---.

Notice in this definition that for any a € V5 there is an ¢ < w such that for all n > 1,
Jn(a) = a, so the limit in the definition of J makes sense. An inverse limit can also be written
as a direct limit as follows (see Figure 2):

J=joojio---=---(Jooji1)(J2) © jo(j1) © Jo-

Proposition 11 (Laver[18]). Suppose that o is good and j : Lat1(Vag1) — Lat1(Vag1) is
elementary. Then there is an inverse limit (K, k) such that for all i < w, k; is a square oot
of 7 and k; extends to an elementary embedding Lo(Vii1) — La(Vai1).

Proof. '3 Choose k; for i < w by induction using the Square Root Lemma, requiring that for
all t < w, ko, ...,k € rngk; 1. Then we have by the above remarks

crit (ko) < crit (k1) < -+ < crit (j) < A.

And hence K = kg o ky o--- is the desired inverse limit. ]

12 As before, we should restate this in terms of k | V,11(a N V) for arbitrarily large a < A, and then use
continuity of this property.

13The following proof is a slight simplification from Laver’s original as we use the remarks made above
about the Square Root Lemma. Also, Laver did not include the fact that k; is a square root of j.
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As is to some extent clear from the definition, inverse limits are especially useful for
proving reflection results on rank-into-rank embeddings. The key question in performing this
reflection is to what extent an inverse limit (J, j), which only gives an embedding V5, — V)
can be extended to V5, ., or beyond to L(V5,,;). One key fact in finding such an extension
is that inverse limits also satisfy a certain Square Root Lemma. In fact, both the extension
of inverse limits and the corresponding Square Root Lemma can be viewed as instances of
the same phenomenon: a property of the embeddings comprising an inverse limit transfers
to the inverse limit itself. Although some instances of this transference can be viewed as
immediate consequences of the continuity of the given property, in other cases the proof is
much more involved.

We now state the Square Root Lemma for inverse limits.

Proposition 12 (Laver). Suppose that a is good and (J, ;) is an inverse limit such that for
all i < w, j; extends to an elementary embedding Loy1(Vis1) — Las1(Vag1). Then for any
a € Vy, 11 and b € Vyi there is an inverse limit (K, k) such that the following hold:

1. for all i < w k; is a square root of j;,

2. k; extends to an elementary embedding Lo (Vii1) — Lo (Vii1),
3. Ay = Ak,

4. K(a)=J(a) and b € rng K.

Proof sketch. Choose k; by induction on ¢ < w using the Square Root Lemma, ensuring that
the following hold:

1. for all n < w, J, € Tngk;,
2. for all n < i, k, € rngk;,
3. a,b €rmgk;.
A computation then shows that (K, E) is as desired. [

The square root lemma for inverse limits, Proposition 12, is the key technique used in
Laver’s proof that Io(1) < Io(w + 1). The proof proceeds by using the square root lemma
to derive elementarity of the inverse limit. This type of argument generally proceeds by
induction on the elementarity of the embeddings making up the inverse limit, and the square
root lemma is used to ‘capture’ witnesses to a given statement. Notice that the strength
of the inverse limit (K E) given by the square root lemma decreases from that of (.J, 7), a
fact which is necessary for this specific statement of the lemma.'* However, this decrease in
strength is what necessitates induction in this method.

On the other hard, the proof that I, < IS% (w) uses an alternative form of Proposition
12 and avoids the need for induction. This alternative square root lemma is also important

14Ty see this, take (J,j) with critical point as small as possible. Then notice that crit (K) < crit (J).

10



in defining the axiom we will call Inverse Limit Reflection in Section 5. First we define the
notion of a limit root.

-,

Definition 13 (C.). Let (J,;) and (K, k) be inverse limits and n < w. Then we say that

(K, k) is an (n-close) limit root of (.J,]) if the following hold
1. for all i < n, k; = j;,
2. for all 1 > n, k; is a square root of j;,
3. Ay = Ak.

A key difference between limit roots and square roots is the following: if k is a square
root of j then crit (k) < crit (§) (since k(crit (k)) = crit (§)), but if (K, k) is a limit root of
(J,7) then it is possible to have crit (K) = crit (J) (in particular, iff K is n-close to J for
n > 1). Hence this opens up the possibility of a sequence of inverse limits (K*|i < w) such
that for all i < w, K is a limit root of K*. We can in fact achieve this by considering

-,

an inverse limit (J,7) such that as ¢ — w, the strength of j; increases. We illustrate this
phenomenon in the following lemma.

Lemma 14 (C.). Assume there is an elementary embedding j : L,(Vai1) — Ly(Vag1). Let
E be the set of inverse limits (J,7) such that for some sequence (i,|n < w) below w the
following hold:

1. lim,_. i, = w,
2. for alln < w, j, extends to an elementary embedding L;, (Vii1) — Li, (Vai1).

Then E satisfies the following: for any (J,f) € FE there is an n < w such that for all
a €V, and b € Vyqy, there is (K, k) € E such that the following hold:

1. K is an n-close limit root of J,
2. K(a) = J(a) and b € rng K,,.

Notice that we would not be able to have such a fact be true about square roots of
embeddings. The key point is that we only require that b € rng K,, rather than b € rng K.
It is also important in practice that the given n work for any a and b (although this is not
much more difficult to achieve).

Proof. For (J,7) € E, let (i,|n < w) witness this fact. Then let n be such that for all n’ > n,
i > 0. We can use the proof of Proposition 12 on J,,, a and b to get K,,. Let K be the
n-close limit root of J defined this way. We then have that

K(a) = (kgokio---k, 1)(K,(a))
= (Joojiojn1)(Ku(a))
= (Joojiojn-1)(Jn(a)) = J(a)
and b € rng K. O

11



We say that E is saturated if it satisfies the conclusion of Lemma 14. The following then
illustrates the type of reflection result which can be obtained for inverse limits.

Theorem 15 (C.[5]). Suppose that « is good and there is an elementary embedding

La+w(v/\+1) - La+w(v>\+1)-
Then there is &, A and a saturated set of inverse limits E such that for all (J, j), J extends
to an elementary embedding

J: La(VZ\H) - La<VA+1)-

The importance of this stronger form of reflection'® comes from its structural implications
for L(Vyy1). This fact allows us to isolate a stronger property of subsets X C V) ; which
appears to be more closer to an AD-like axiom for L(X,Vy,1) than the property that X is
Icarus. We will investigate this idea in Section 5.

4 Structure of L(V).1)

We now look at the structure of L(V) 1) under the assumption that Iy holds at A\. The main
theme in this study is that the structure of L(V),1) under I is very similar to the structure
of L(R) assuming AD*® . However, there are several important differences between the two
situations which we highlight:

Perhaps the most apparent distinction, but the most easily remedied, is that [, is not
a first-order statement in L(V)i1), whereas AD is a first-order statement in L(R). The
statement Io(< ©,) is however a first-order statement in L(V),1), and most of the structural
implications of Iy for L(Vy;;) follow from this weaker axiom.

Woodin showed that assuming a proper class of Woodin cardinals, the theory of L(R) is
generically absolute. Such a fact is not the case for L(V),1) however, as the theory of V)
is not generically absolute for small forcings (such as changing the size of the continuum).
Therefore in deciding whether a given property holds in L(V);1) assuming Iy, one must also
allow for the possibility that it is dependent on V. One solution to this problem, suggested
by Woodin, is to consider the structure of L(V),;1) in a canonical inner model satisfying
Iy. However, as such an ‘ultimate L’ does not yet exist, there have been no such results.
Nevertheless there are many important properties of L(V),1) which do not depend on V/,
and we will describe these below.

Arguably the most important distinction is the following. The structural properties
of L(Vy41) under I, do not necessarily translate into properties of L(X,V);;) assuming
X C Vyyq is Icarus. The axiom I therefore does not appear to be an appropriate analog of
AD in the sense of being a fundamental regularity property, for instance. This fact naturally
leads to the question of what would be an appropriate AD-like axiom, and this question is
the subject of Section 5.

15Tn fact you need a slightly stronger form of reflection, Strong Inverse Limit Reflection, which we will
define below.

12



Some of the results below require that the embedding j be proper. As we are focusing
on the case of L(V);1), we refer the reader to [26] Section 3 for the definition of proper
elementary embeddings. In the case of L(V);1), the word proper can simply be removed
from everything we say (although not all I, embeddings are proper).

4.1 Measurable cardinals below O,

We begin by looking at measurable cardinals in L(Vy;;). We first recall the situation of
L(R), where it has been shown that ©X®) is a limit of of large cardinals.

Theorem 16 (Solovay(see [14]), Steel[25]). Assume AD*®) . Then in L(R), w, is mea-
surable, and in fact the club filter is an ultrafilter. Also every reqular cardinal below © is
measurable.

Woodin was able to show a number of these facts hold for L(X,V);;) assuming X is
I[carus.

Theorem 17 (Woodin[26]). Assume that j : L(X,Vy41) — L(X,Vii1) is a proper elemen-
tary embedding. Then \* is measurable in L(X,Vyy1), and in fact © = @L5VA) s g limit
of v such that the following hold.

1. 7 1s weakly inaccessible.
2. v =0l and j(v) = 7.
3. for all § <, P(B) N L(X, Va1) € Ly(X, Vaga).

4. for cofinally many k < 7, K is measurable in L(X, Vyy1) as witnessed by the club filter
on a stationary set,

5. Ly(X, Vi) < Le(X, Vi),

Below we will sketch a proof that there is a stationary subset S of A™ such that the club
filter restricted to S is an ultrafilter in L(V)y1) (Theorem 22). This fact shows that A is
indeed measurable in L(V),1). The main point is that the existence of the I, embedding
shows that A* cannot be partitioned into A-many disjoint stationary sets. We mention a few
questions left open by this analysis.

Question 18. If Iy holds at A, in L(Vyi1) are XY, AXTTF ete. regular or singular?

Question 19. If Iy holds at X\, in L(Vy\y1) is every reqular cardinal below ©) and above A
measurable?

In the course of proving this theorem, Woodin also proved the following analog of
Moschovakis” Coding Lemma.
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Theorem 20 (Woodin). Assume that X C Vyyy is Icarus. Suppose p : Viy1 — 1 is a
surjection with p € L(X,Viy1). Then there exists v, < OLXVAL) such that for all sets
A C Vi x Vayg with A € L(X,Viy1), there exists B C Vyyq X Viyq such that

1. BCA,

2. for all o < m, if there exists (a,b) € A with p(a) = «, then there exists (a,b) € B with
pla) = a,
3. B L, (X, Vain).

This theorem however gives a rather coarse version of the Coding Lemma, and therefore
leaves open such questions as the following.

Question 21 (Woodin). If Iy holds at A, is
PN L(Vay1) = PO N LA(H(AT))?

As mentioned above, a key fact in the proof of Theorem 17 is a restriction on partitioning
regular cardinals into stationary sets. In particular we have the following.

Theorem 22 (Woodin). Assume X C Vi is Icarus and v < © is such that cof(y) > .
Then for

S =A{¢ <[ cofly) = w},

there 1s a partition

(Sal @ <m) € L(X, Vi),

of S such that n < X and such that in L(X,Vy\y1), for all o« < n, F | S, is an ultrafilter,
where F s the w-club filter on 7.

Proof. Suppose towards a contradiction that there is such a ~, and let v* be least such.
Hence for j an Iy(X)-embedding, we have j(v*) = v*. Let (S,|a < crit (j)) be a partition
of S into crit (j)-many disjoint stationary sets. Let

(Tol o < j(erit (7)) = j((Sal a < crit ().

Then by elementarity (7,|a < j(crit (j))) is a partition of S into disjoint stationary sets
(here we are using that j(S) = S). Note that

C ={6 <~7j(d) = 6}

is w-club below v*. Hence there is § € C'N T4, ;). But there is some o < crit (7) such that
0 € S,. And hence
Jj(0) =06 €T, = j(Sa).

And this is a contradiction since then T;, and T (j) are not disjoint. O
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Note that in Theorem 22 (if j is finitely iterable) we can replace S by S¥ = {¢ <
7| cof(§) = B} where § < X is a regular cardinal. We then modify the proof by considering
a large enough finite iterate of j so that C' is indeed (-club below ~*.

We now look at the specific case of AT in L(V);1). In that case we have the following.

Theorem 23 (Woodin). Assume Iy holds at A. Then in L(Vyy1), AT can be partitioned into
stationary sets S, for o < X such that for all o < X\, F | S, is an ultrafilter, where F 1is the
club filter on \*.

One question is to what extent this theorem can be improved so that it more closely
resembles the corresponding result under AD that w; is measurable as witnessed by the club
filter. Since there are A many regular cardinals below A, this result cannot be improved as
stated, but one might ask whether the club filter restricted to S® = {n < A\*|cof(n) = x} is
an ultrafilter. The next theorem shows that for x uncountable this cannot be proven from
Io.

Theorem 24 (Woodin). Suppose Iy holds at A. Let k < X be an uncountable cardinal and
g C Coll(k,k™) be V-generic. Then in Vg|, Iy holds at A and in L(V]g]x+1), S* can be
partitioned into two stationary sets.

Proof. Let S; = {a < A"|cof(a)V = k} and Sy = {a < AT|cof(a)" = kT}. Since g does
not add any w-sequences we have that Vi1 € L(V[g]as1) since V) € V]g]xs1. So clearly
S1, 89 € L(V[g]as1), they are stationary, and they partition S*. ]

In fact Woodin has shown a stronger fact using Radin forcing.

Theorem 25 (Woodin). Suppose Iy holds at X as witnessed by j. Let k < crit(j). Then
there is P € Viuy(;) such that for g C P V-generic, we have in Vlg] that Iy holds at \,
Vi = Vgls, and in L(V[g]xs1), S“* can be partitioned into k-many stationary sets.

This theorem shows that [, alone gives virtually no information as far as to what extent,
for instance, S“!' can be partitioned. Similar results hold for cofinalities larger than w;.
Importantly, however, it leaves open the case of kK = w, and in fact Woodin proved the
following theorem which shows that the above proof fails in the k = w case. This theorem
is a corollary of Theorems 36 and 35.

Theorem 26 (Woodin). Suppose that Iy holds at . Suppose that P € Vy, g is P-generic
over V and

(A # (A)VHl.
Then in Vg],
Vit & L(VI[g]nt1)-

Now, concentrating on the case of S“, the following theorem gives evidence that perhaps
the club filter is an ultrafilter when restricted to S“.
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Theorem 27 (C., Woodin (for Ly(Vy41))). Suppose that Iy holds at X\. Then there are no
disjoint stationary (in V') sets S1, Sy € L(Vyy1) such that Si,Ss C S¥.

However this theorem does not quite show that in L(V) 1) there are no disjoint stationary
subsets of S“, since such sets might not be stationary in V. Hence we have the following
question.

Question 28 (Woodin). Suppose Iy holds at X\. In L(Vyy1) is the club filter restricted to S
an ultrafilter?

As for partition properties at AT, we have since w;-DC holds in L(V),1) that
L(Via) I AT — (A3
This leads to the following question.

Question 29 (Woodin). If Iy holds at A, then for all @ < wy do we have
L(Vae) | AT — (AT)37

Woodin showed that for « such that w-«a = «, if this properties fails in V' then it must fail
in all generic extensions by a forcing P € V). In the positive direction the best known partial
result is the following, whose proof uses Radin forcing together with generic absoluteness
properties, Theorems 62 and 82 below.

Theorem 30 (Woodin). Suppose Iy holds at A. Then for all o < f < wy,

L(Va) E AT = ()5

4.2 Perfect set property

The perfect set property for a set of reals X is a strong version of the continuum hypothesis. It
states that either X is countable or it contains a perfect set!®, in which case | X| = |R| = 20,
While the Axiom of Choice implies that there is a set of reals which does not satisfy the
perfect set property, in fact AD implies that every set of reals has the perfect set property.

Theorem 31 (M. Davis[7]). Assume AD holds. Then if X C R, either X is countable or
X contains a perfect set.

Using U(j)-representations (see Section 5), Woodin was able to show that a version of
the perfect set theorem in the context of AD holds for Ly(Vyy1). To do this, we regard V)
as a topological space with basic open sets O,,), where a < A, a C V,, and

O(ma) = {b S V,\+1| bNV, = a}.

16 A set is perfect if it is closed and has no isolated points.
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Since cof(\) = w, this is a metric topology, and it is complete.

Perfect sets in the usual context of the reals are somewhat simpler than perfect sets in the
context of V)1, since perfect subsets of V), can have varying sizes. We are most interested
in perfect sets which have the largest possible size, so that our perfect set property continues
to be a strong form of the generalized continuum hypothesis. With this in mind we make
the following definition.

Definition 32. Suppose P C Vi, is a perfect set. For k < )\, we say that P is x-splitting'”
if for all a € P, v < A\, and a < k, there is a § < A such that

HoNVslbe Pand bNV, =anV,}| > a.

We say that X C V. has the \-splitting perfect set property if either | X| < A or X
contains a A-splitting perfect set.

Using U(j)-representations (see Section 5.1), Woodin was able to prove the following.

Theorem 33 (Woodin). Suppose Iy holds at \. Then if Z € Ly(Viy1) N Viya, then either
|Z| < X\ or Z contains a perfect set.

Shi-Woodin later improved this fact using Theorem 62 with diagonal supercompact Prikry
forcing.

Theorem 34 (Shi-Woodin[22]). Suppose Iy holds at A. Then for all Z € Ly(Vyy1) N Viia,
either |Z| < X or Z contains a \-splitting perfect set, and therefore |Z| = 2*, so Z has the
A-splitting perfect set property.

Using the tool of inverse limit reflection, we were able to improve this result to all of
L(Vyy1).

Theorem 35 (C.[5]). Suppose Iy holds at \. Then if Z € L(Vy41)NViya, then either |Z] < A
or Z contains a \-splitting perfect set, and therefore |Z| = 2.

There are several interesting consequences of this perfect set theorem. First we obtain
some information on L(V)4) in forcing extensions. In particular we have the following.

Theorem 36 (Woodin[26] Theorem 175). Suppose that Iy holds at \. Suppose that P € Vj,
g 1s P-generic over V' and

(A # (),
Then L(Vii1, V]glat1) does not satisfy the \-splitting perfect set theorem.

Proof sketch. The point is that in V[g|, since |[Vy;1| > A, there must be a A-splitting perfect
set P C Vi such that P € L(Vyy1,V[g]ss1). But since P is a small forcing, this shows'®
that in fact any w sequence of ordinals below A\ can be coded into an element of P. And
hence (X")V[g] C V, which is a contradiction. O

170One can also define s-splitting in terms of the splitting number of the natural tree of initial segments of
elements of P.
18See [26] Theorem 175, Page 395.
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Theorem 36 gives an interesting example of an X C V)., such that X is Icarus, but
subsets of Vy,1 in L(X,Vy,1) do not all satisfy a certain regularity property, namely the
A-splitting perfect set property. This example has a number of interesting consequences for
the AD-like axioms which we will consider in Section 5. In particular it gives a contradiction
to the assertion that I is in fact the appropriate analog of AD in the context of V)1,
since [o(X) holds for this X, and it at the same time displays the difficulty in propagating
the AD-like axioms of Section 5, as these axioms do not propagate generally throughout all
L(X, V1) structures. On the other hand, results such as Theorem 36 potentially give criteria
for evaluating extensions of L(V)41), and they highlight the importance of propagating the
potential AD-like axioms beyond I, (see Section 6).

4.3 Uniformization

The notion of a uniformization of a relation R on R x R is easily generalized to V).

Definition 37. Suppose R C V)1 x V)41 is a relation. Then U C R is a uniformization of
R if for all 2 € dom(R), there is exactly one y € V1 such that (z,y) € U.

However, the question in L(V) 1) of which relations have a uniformization is not very well
understood at this moment. As in the case of L(R), uniformization cannot hold in L(V)).

Fact 38. In L(V)y1) there is a set Z C Vi1 X Viy1 such that Z has no uniformization.

Proof. Work in L(Vy,1). Let Z be defined by
Z ={(z,y)|y is not OD from z}.

Suppose U C Z is a uniformization. Then U is OD from some z € V4. But then U(z) is
OD from z, which is a contradiction. O

In the case of L(R), however, uniformizations can be obtained from scales, and every
Y1(L(R),{R} UR)-set has a scale (see [21]).

In the L(V)41) case on the other hand, where the first failure of uniformization occurs is
far from clear.

Question 39 (Woodin). Suppose Iy holds at \. Let Ryt C Vi1 X Vg be defined by
Ryt = {(4, k)| 7, k : Vag1 — Viya are elementary and k is a square root of j}.

Does Ryt have a uniformization in L(Vyiq1)?

Most of the results on uniformization for L(Vy,;) are negative results stemming from
Fact 38 and the positive results on AD-like properties for subsets of Vi, in L(Vy;1). In
particular we have Corollaries 68 and 76 which state that uniformization does not follow
from either U(j)-representability or strong inverse limit reflection.
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We now give some background surrounding Question 39 and show that we can get some-
what close to such a uniformization. In particular we will restrict the domain of the relation
Rsqri, and then show that the restriction has a uniformization. Of course, this process in-
volves a restriction of the domain, and therefore does not succeed in uniformizing Rgg.
However, we can also show that if a uniformization of Ry, exists, it is an extension of
of the type that we define below. This fact gives perhaps a small indication that such a
uniformization does not exist.

We first make the following definition for a < ©,, 7 : V), — V), elementary, and b €
La(V)\+1)Z

Eo(b) = {k : Vi — Vil k extends to k, k : La(Vis1) — La(Vas1) with b € rngk},
E, = E,(0) and El(b) = {k € E,(b)| k is a square Toot of j }.

Proposition 40. Assume Iy holds at A. Suppose that R C Vi 1 x V41 and R € L(V)\H). Let
a < © be good and such that R € Lo(Vi;1). Let j € Eqyq and suppose there is k € E? | (R)
and a € Vi1 such that (k,a) € R. Then R | E? (R, k(a)) is uniformizable in L(V)11).

Proof. Let j, k and a be as in the hypothesis. Then by applying k to the fact that (k,a) € R
we have that (7, k(a)) € k(R). But k(R) = j(R) since k is a square root of j, o is good, and
R e rmgk. So (j,k(a)) € j(R).
We define 4
U={(t, (" (k(a)] € € B\, (R, k(a)).

Note that we have
(4, k(a)) € j(R) = (¢,¢(k(a)) € (7' (j(R)) = R

since we can pull back by (, and ( € E} (R, k(a)). Hence, U is a uniformization of R |
E} (R, k(a)), and clearly U € L(Vy41). O

Corollary 41. Assume Iy holds at X. Let j € Ey and suppose (j, k) € Regre. Then Regry |
EY(k) is uniformizable in L(Vy,1).

We can also prove the following partial converse of the above proposition.

Proposition 42. Assume Iy holds at A. Suppose that R C Vi1 X Vayy and R € L(Vy4q).
Also assume that U is a uniformization ofRAand U € Lo(Vay1) where « is good. Then for
any j € Eqq1 if b € Viyq is such that (4,b) € j(U), we have that

Ul B\ (U0) = {(6, 1 (0)] € € B, (U.b)}.

Proof. To see this, suppose that (j,b) € j(U) is as in the hypothesis. Let ¢ € Ei+1(U, b).
Then we have that R o
(7:b) € 3(U) = (£, £71(b) € 71 (3(U)) = U.
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For the next definition we use the notation that ji,) is the nth iterate of j. That is,
Joy) = J and jy1) = () for n <w.

Definition 43. For j € E, and a € L, (Vyy1), we let E/(a) be the set of embeddings k € E,
such that the following hold:

1. For some m and n < w, jm) = k).
2. For some (all) m and n as in (1), jom(a) € rng ko ,.
If k € El(a), we set EJ(k)[a] = kg n(jom(a)) where n and m are as in (2).
We can then improve Proposition 40 to these larger sets in the case R is fixed by j.

Proposition 44. Suppose that j € E, and R C Vi1 X Vayq, R € L.(Vai1) is~such that
j(R) = R. Suppose that (j,a) € R. Then for U;, the set of (k,b) such that k € E({a, R})
and b = FE(k)[a], we have that the following:

1. Uja is a uniformization of R | Ei({a, R}).

2. If k is good and j extends to an elementary embedding j* : L.i1(Vii1) — Lir1(Vagr)
then j*(Ujq) = Uja.

The proof of this proposition is very similar to the proof of Proposition 40. And we
also have the corresponding result to Proposition 42, though we leave the statement to the
reader. These results lead us to the following conjecture.

Conjecture 45. Assuming Iy holds at A as witnessed by j, the relations Ry | Eg and
Ryt | EY(0) have no uniformizations in L(Vyy1).

We make this conjecture as a result of the above converse propositions, which seem to in-
dicate that the only method for creating uniformizations of these types of relations is through
the above ‘pullback’” method, which is necessarily insufficient for a full uniformization.

5 AD-like axioms for L(V))

We have seen in the previous section that many structural results can be obtained for L(V)y 1)
by assuming I, holds at A\. These facts point to Iy being an ‘AD-like axiom’ in the sense
that it gives a structure theory of L(V)y1). As we noted above, however, there are various
objections which could be raised against this assertion. In this section we introduce several
alternative axioms'® which have been proposed as AD-like axioms. First we will introduce
U (j)-representations which were defined by Woodin, then we will introduce inverse limit
reflection which was defined by the author, and lastly we will define some more recent
axioms motivated by U(j)-representations.

9Note that, importantly, we will see that these axioms do follow from Iy for L(Vyy1). It would therefore
make sense to think of Iy as being the large cardinal axiom which is implying the AD-like axiom for L(Vy 1)
much in the same way as large cardinals imply AD*®),
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5.1 U(j)-representations

By way of motivation we first define Suslin and weakly homogeneously Suslin representations.
In general, in the context of R, for a set A we say that X C R has a tree representation T
onw x Aif T is a tree?® on?! (w x A)<¥ and for any = € R,

r € X <= T, is illfounded.

Here
T,={bl3n <w((z [ n,b) eT)}

is the tree on A<“ associated to x. Saying that T, is illffounded is equivalent to the existence
of some b € A such that for all n < w, (x [n,b[n)eT.

Tree representations in general are usually not of interest, as any X C R has a trivial
tree representation on w x R, for instance, defined by

(2,0) €T <= zew and Iz* € X (b= (2", 2",...,2") A |b| = x| ANz = 2" | |z]).

If however we restrict the set A, we arrive at a much more interesting notion. For s an
ordinal, we say that X C R is x-Suslin if X has a tree representation on w x k. Of course, if
AC holds and x > | X/, this again is a rather uninteresting notion. However, in the context
of determinacy, these Suslin representations are very important(see [13]).

In the context of AC however, the notion of a Suslin representation can be augmented
with the use of measures. We then arrive at what are called homogeneously Suslin and weakly
homogeneously Suslin representations (for a complete introduction to these representations
see [16]).

For ¢ a cardinal and Z a set, we say that T"is a d-weakly homogeneous tree if there exists
a countable set o of §-complete measures on Z<“ such that for all z € p[T], there exists a
countably complete tower of measures® (u,|n < w) such that for all n < w, p,(Tppm) = 1.
And X C R is d-weakly homogeneously Suslin if there is a d-weakly homogeneous tree T
such that A = p[T].

We now define U (j)-representations, which are analogous to weakly homogeneously Suslin
representations, but in the context of L(V);1). The main difference is that we restrict the
measures which can be used to witness homogeneity to a collection of measures called U(7)-
measures. In addition we have to work with the particularities of working with A instead of
w; in particular there is no natural cofinal sequence in \.

We first introduce some terminology. We fix j : L(Vy;1) — L(Viy1) an iterable elemen-
tary embedding with crit (j) < A\. We say that a sequence @ = (a,|n < w) is weakly fized by
jifforalln <w, |a,| < A, a, C an41 and there exists an m such that ju,(a,) = ay.

20A tree is a set closed under initial segments.

21'We will confuse (w x A)<* with w<* x A<“_ as is customary.

22 A tower of measures is such that each measure projects down to the previous measures, and nth measure
concentrates on n-sequences. So for instance A € pu; <= {t" (s)|t € A,s € Z} € pa. To be countable
complete means that each sequence of measure one sets can be threaded. Equivalently, the direct limit of
the ultrapowers given by the measures is wellfounded. See [16] for more details.
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For S a set of embeddings we let
Fix(S) = {a| Vk € S (k(a) = a))},
and we set Fix(k) = Fix({k}). We then set F*(k,a) to be the filter generated by the sets
Fix(S) where S € [E*(k, a)]*.
For @ € [L.(Vay1)]* weakly fixed by j, we let A7 (k, @) be the set of sequences (A,|n < w)
such that for all n < w, A, € F/(k,a,). We also set for A € A(k,a), T (A) to be the

largest tree T' such that any node s of T' is such that for all large enough n, s € A,,.
We now proceed to define the set of U(j)-measures and U (j)-representations.

Definition 46 (Woodin). Let U(j) be the set of U € L(V,y1) such that in L(Vy;;) the
following hold:

1. U is a AT-complete ultrafilter.

2. For some 7 < O, U € L,(Vy41).

3. For all sufficiently large n < w, j,)(U) = U and for some A € U,
{a € Aljmy(a) =a} € U.

The next lemma gives us a way of generating lots of U(j) measures. The proof is very
much along the lines of the proof of Theorem 22. For each ordinal &, let ©%+(VA+1) denote
the supremum of the ordinals « such that there is a surjection p : V43 — « such that

{(a,0)[ p(a) < p(b)} € Lu(Vasa).

Lemma 47 (Woodin). Suppose k < ©, k < ©L1) g € L. (Vyyy) and that j(k,a) =
(k,a). Then there is § < crit(j) and a partition {Sa| o < 6} € L(Vag1) of Lg(Vag1) into
Fi(k,a)-positive sets such that for each o < 4,

Fl(k,a) | Sq € U(5).

Suppose that x < © and k < OL*+1) and (a;]i < w) is weakly fixed by j. Let
U(j,k, (a;] i < w)) denote the set of U € U(j) such that there exists n < w such that
for all k € E’(k, (a;]i < n)),

Fix(k) € U.

We can now define U(j)-representations for subsets of V).

Definition 48 (Woodin). Suppose k < ©, k is weakly inaccessible in L(V) 1), and (a;] i < w)
is an w-sequence of elements of L, (V);1) such that for all i < w there is an n < w such that

j(n)(ai) = Q.
Suppose that Z € L(Vyy1) N Vige. Then Z is U(j, k, (a;| i < w))-representable if there
exists an increasing sequence (\;| 7 < w), cofinal in A and a function

T U{VAZ-H X Vi x {i}i <w} = U(j, 5, (ai] i <w))
such that the following hold:
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1. For alli < w and (a, b,7) € dom(r) there exists A C (L(Vy41))" such that A € w(a, b, 1).
2. For all i < w and (a,b,1) € dom(n), w(a,b,i) € U(j, k,a;).*
3. For all i <w and (a,b,i) € dom(7), if m < i then
(anVy,,,bNV,, ,m) e dom(r)
and 7(a, b, 1) projects to w(aN'Vy,,,bN V), ,m).
4. For all x C V), x € Z if and only if there exists y C V) such that

(a) forallm <w, (xNV,,,,yNV,,,m) € dom(m),

(b) the tower
(m(xNVy,,yNVy, ,m)|m<w)

is well founded.

For Z € L(Vy41) N Viyo we say that Z is U(j)-representable if there exists (k, (a;|i < w))
such that Z is U(j, k, (a;] i < w))-representable.

5.1.1 Propagation of U(j)-representations

First we give an outline of how U(j)-representations have been propagated throughout
L(Vys1). Then we give details of some of the methods involved in this propagation.

It is relatively easy to see that U(j)-representations are closed under unions of size A
and existential quantification (see [26], Lemmas 114, 115). However, the case of comple-
ments is much more complicated. In spite of this, Woodin was able to first propagate
U(j)-representations up to A.

Theorem 49 (Woodin[26], Theorem 134). Suppose j witnesses Iy holds at X\. Then in
L(Vyy1) every set X € Ly(Viy1) N Ve is U(j)-representable.

He also showed that a certain continuous ill-foundedness condition called the Tower Con-
dition (see Definition 50) implies that U(j)-representations are closed under complements.
We then showed [5] that the Tower Condition holds in general for L(X,V);1) assuming
that X is Icarus. This result by a Theorem of Woodin, pushed the U(j)-representations in
L(Vyy1) beyond AT. Beyond this point, Woodin also defined a certain game (see Definition
54) on fixed points of embeddings, which if one could prove had a high enough rank, then the
set of U(j)-representations could be propagated even further. We gave such an analysis[3],
which effectively pushed the U(j)-representations beyond the first 3;-gap (Theorem 60). Fi-
nally, in order to show that every subset of V), in L(V)41) has a U(j)-representation, these
representations were propagated along with j-Suslin representations (see [1] and Section 5.3).

2This condition is slightly strengthened from the corresponding condition in [26]. The set of U(j)-
representable sets is unchanged however. We make this restriction because of useful properties exploited in

[1].
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We now look at some of the details of these theorems and some of the methods used in
their arguments. First we start with the Tower Condition, which basically says that given
a collection of U(j)-measures there is a continuous choice of measure one sets, such that if
there is an illfounded tower, this is witnessed by the chosen measure one sets.

Definition 50 (Woodin). Suppose A C U(j), A € L(Vii1), and |A| < A. The Tower
Condition for A is the following statement: There is a function F' : A — L(V,41) such that
the following hold:

1. ForallU e A, F(U) e U.

2. Suppose (U;]i <w) € L(Vy41) and for all i < w, there exists Z € U; such that Z C
L(Vyy1)', U; € A, and Uy projects to U;. Then the tower (U;]i < w) is wellfounded in
L(Vy41) if and only if there exists a function f : w — L(V)4;) such that for all i < w,
flrieFU;).

The Tower Condition for U(j) is the statement that for all A C U(j) if A € L(Vy41) and
|A] < A then the Tower Condition holds for A.

Theorem 51. Let j : L(Vyi1) — L(Viy1) be elementary such that crit(j) < A. Then the
following hold:

1. Tower Condition for U(j) holds in L(Vyy1) (C. [5]).
2. The set of U(j)-representable sets is closed under complements (Woodin [26]).

Proof sketch. In order to prove (1), for a A-sized set A of U(j)-measures, there is no inverse
limit J such that for all U € A, U is in the range of the extension of J. However, we can
almost achieve this in that any U € A is in the range of the extension of (jooji0---0j,_1)(Jy)
for some n. Having such a .J, we pull back®® to an A which has size A;. Using that each
measure in U(j) is A* complete, we can show that A has the Tower Condition. A tower
function for A can then by pushed forward to obtain a tower function for A.

To prove (2), we look at the tree of attempts to continuously illfounded the tower given

by a U(j)-representation . O
In fact the proof holds more generally for X Icarus.

Theorem 52. Let j : L(X,Vyy1) — L(X, Viy1) be a proper elementary embedding such that
crit(j) < A. Then the following hold:

1. Tower Condition for U(j) holds in L(X,Vyy1) (C. [5]).

2. The set of U(j)-representable sets in L(X, Vyy1) is closed under complements (Woodin
[26]).

24We do not actually need to reflect, which is the reason why we can prove this result for L(X, Vi 1).
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As a consequence of the Tower Condition, Woodin showed that U(j)-representations
propagate beyond A\T.

Theorem 53 (Woodin[26]). Suppose there exists an elementary embedding
J o L(X,Vay) — L(X, Vag).
Let Y be U(j)-representable in L(X,Vyi1). Let K = AT and set
n = sup{(x")H] A C A},

Then every set
Z € Ly(Y,Vag1) N Vayo

is U(j)-representable in L(X, Vyi1).

To propagate U (j)-representations beyond this point we now look at the following game
on fixed points of embeddings, introduced by Woodin.

Definition 54. Suppose v < ©Fa+1),
Emb(j,v) := {k|k : L,(VAt1) — L,(Vi41) is elementary},

and
(aili < w) € (Ly(Vat1))”

and we have:
1.y < @L’Y(V)\+1)7
2. for all i <w, a; C a1 C v and |a;| < A,
3. for all i < w, there exists an n < w such that j,(a;) = a;.
Then let G(j,7, (a;]i < w)) denote the following game. Player I plays a sequence
((vi, (bl - m < w)) i <w)
and player II plays a sequence (&; : i < w) such that the following hold:
1. & C Emb(j,7:), |&| < A, and for each k € &; there exists m < w such that k(b)) = b.,.
2. Y% =", Yi+1 < 7; and there exists m < w such that
k(by,) = b, = k(Yir1) = 7inn
for all k& € &;.

3. for all i < w, v; < Ok (a1))
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4. (B0 :m < w) = (a,:m < w).
5. for all m < w, b, C b, C, and |bL,| < A

m

6. for all m < w there exists m* < w such that
k(b .) =b . = k(05 = bttt
for all k € &;.

Of course II always wins this game, but we are interested in the rank of this game, which
we define as follows.

Definition 55. Let G5(j, 7, (ai| i < w)) have the same definition as G (7, v, (a;| i < w)) except
that II must also play ordinals dp > d; > --- such that oy < 0. Then if § is least such that II
has a quasi-winning strategy in Gs(7,7, (a;| i < w)), then we set § = rank(j,~, (a;]i < w)).

Theorem 58 shows that for any § < © we can find v and (a;| ¢ < w) such that
rank(j, Y, <CL1| S w>) > 0.

That is, the rank of this game can be made arbitrarily large by an appropriate choice of
parameters. We give some definitions now so that we can give sufficient criteria for the rank
to be large.

Definition 56. Suppose v < O+ § C [ (Vy,y), and {a;|i < w) € (L,(Va;1))* and we
have:

1. ¥ S @LW(V/\Jrl)’
2. for all i <w, a; C a1 Cyand |a;| < A,
3. foralli <w, a; € F¥,,(j).

4. S = Ui<w a;.
Then we say that (a;| i < w) is a j-stratification of S.

Suppose that j : L(Viy1) — L(Viy1). Note that for all S C Fg(j) such that |S] < A,
thereisay < © and a (a;]i < w) € (L, (V41))* such that (a;|i < w) is a j-stratification of S.
Hence for any v < AT, if (a;] i < w) is a j-stratification of 7, then rank(j, v, (a;|i < w)) = 7.
An instructive example then is to show that rank(j,\™,0) = A*, which we leave to the
reader.

Definition 57. Fix x < © good with cof(k) > A. Let S C & such that |S| < A. Then we
say that S is A-threaded if the following hold:

1. Suppose a < sup S isﬁsuch that there exists 5 € S<¥ and a € V), such that « is definable
over L,(Vyy1) from  and a. Then a € S.
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2. Suppose « € S is a limit and cof(a) < A\. Then S N« is cofinal in a.

Theorem 58. Let j : L(Viy1) — L(Viy1) be elementary. Fiz k < © good in L(Vyy1).
Suppose that S has a largest element oy, S is A-threaded, and {(a;|1 < w) is a j-stratification
of S. Then rank(j, k + ap, @) > ayp.

Proof sketch. We guide Player I by using reflection. Roughly speaking, if a certain rank (3 is
to be achieved, then this 3 is reflected to a 3, and then the least image of 3 above some 7 by
an inverse limit, say (* is considered. If v was chosen appropriately then this 5* is definable
from parameters in V), (in particular 3), and hence is a fixed point of embeddings in &; for
1 large enough. The details of the proof involve a certain amount of bookkeeping to ensure
that this strategy works. O]

We immediately have the following corollary, which gives the following result on U(j)-
representations by Theorem 148 of [26].

Corollary 59. Suppose there exists an elementary embedding j : L(Vyy1) — L(Vay1). Then
the supremum of rank(j, k,d) for all possible k and @ is ©.

Theorem 60. Assume there exists an elementary embedding j : L(Viy1) — L(Vay1). Let &
be least such that
Le(Van) AP L (V).

Then for all sets X C Vyi1 such that X € L,(Vyy1), X is U(j)-representable in L(Vyi1).

Finally, by propagating U (j)-representations along with j-Suslin representations (Section
5.3), we showed the following in [1].

Theorem 61. Assume j witnesses that Iy holds at A. Then in L(Vyy1) every set X € Vo
is U(j)-representable.

We will discuss some of the details of this proof in Section 5.3.

5.1.2 Consequences of U(j)-representations

Two of the most important consequences of U (j)-representations are (1) a certain generic
absoluteness theorem for certain forcings between M, and V, and (2) obtaining weakly
homogeneously Suslin representations after collapsing A to w. The generic absoluteness
result allows us to obtain structural consequences for L(Vyi1), and the fact that we can
obtain weakly homogeneously Suslin sets allows us to connect the study of L(V),1) to models
of determinacy.

We start with a generic absoluteness result due to Woodin, and then we show some of
its consequences.
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Theorem 62 (Woodin). 2° Suppose j witnesses that Iy holds at X and j is iterable. Let
Jow : L(Vag1) — M, be the embedding into the wth iterate of L(Vi41) by j. Suppose P €
Jow(VA), g € V is P-generic over M,,, and (cofi\))M<l9 = w. Then we have for any a < X
an elementary embedding

Lo(Mulg] N Vag1) = La(Vag)

which 1s the identity below .
We now isolate the generic absoluteness property present in this theorem.

Definition 63. Suppose j witnesses that [y holds at A and j is iterable. Let
jO,w . L(V)\Jrl) - Mw

be the embedding into the wth iterate of L(Vyi1) by j. We say that generic absoluteness
holds between M, and L,(Vy41) if for some & we have the following. Suppose P € jj,(V3),
g € V is P-generic over M,,, and (cof(\))M~l9) = . Then there is an elementary embedding

La(M,[g] 0 Vag1) = La(Vayr)
which is the identity below A.

We could then rephrase Theorem 62 as stating that if Iy holds at A as witnessed by 7,
then for any av < A, generic absoluteness holds between M, and L, (Vy,1). We will see below
that there are in fact other representations which imply this generic absoluteness property.

We mention a couple of consequences of this theorem. Theorem 34 follows from Theorem
62 and we also obtain the following theorem on the failure of SCH at \.

Theorem 64 (Dimonte-Friedman[9], Woodin independently). Suppose Iy holds at X. Then
it 18 consistent that Iy holds at A\ and the singular cardinal hypothesis fails at ).

Proof sketch. Let j be an Iy embedding. Force so that GCH fails at crit (j) and so that the
generic g is mapped coherently by j, so that we may extend j to the extension. Let 5* be
the natural extension of j. In the extension let M,, by the wth iterate of L(V[g|r4+1) by j*.
Then M, satisfies that GCH fails at A\. Let & be the critical sequence of j*. Then M,[&]
satisfies that SCH fails at A, and by Theorem 62, I; holds at . m

Note that in defining an AD-like axiom from U(j)-representations it is the generic ab-
soluteness property which seems to imply regularity properties for subsets of V).;. And
this generic absoluteness property does not obviously follow in the same way in the context
of L(X,Vy;1), assuming the existence of uniform U(j)-representations. Therefore the AD-
like axiom would seem to be the generic absoluteness result itself, unless a general generic
absoluteness result could be proven from the existence of uniform U(j)-representations.

25Notice here that VAM“ = V). Also, this theorem does not actually follow directly from the existence of
U (j)-representations, but rather it follows from the existence of a uniform version of a U(j)-representation.
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We now show that U(j)-representations can be used to connect to models of determinacy
when collapsing A\ to w. To see this, let I'> be the set of universally Baire sets of reals. The
determinacy axiom LSA states that the largest Suslin cardinal exist and is a ©,, that is a
member of the Solovay sequence. Corollary 168 of [26] together with Theorem 61 gives us
the following theorem.

Theorem 65. Suppose that X is a limit of supercompact cardinals and there is a proper class
of Woodin cardinals. Suppose that Iy holds at X. Let G C Coll(w, \) be V-generic. Then for

g = )90 L(Vag)[G]
we have that L(I'Y) satisfies LSA.

Although G. Sargsyan recently showed that Con(LSA) follows from a Woodin limit of
Woodins, the above theorem gives an alternative proof of Con(LSA) from large cardinals.
We also obtain the following theorem, which shows a strong relationship between L(V)1)
and models of determinacy after collapsing A to w.

Theorem 66. Suppose that X is a limit of supercompact cardinals and there is a proper class
of Woodin cardinals. Suppose that Iy holds at X. Let G C Coll(w, \) be V -generic. Then for

L = ()90 L(Vag)[G]

we have that
OLM) — oLd'E),

Proof. To see that
OLWVat1) < oLrE)

let « < © and let X C V), code a prewellordering of V), of ordertype at least a. We have
that X is U(j)-representable in L(V);1), which implies that in L(V)41)[G], X can be coded
as a subset Y C REMIG guch that Y is weakly homogeneously Suslin. Hence since there
is a proper class of Woodin cardinals, Y is universally Baire. And hence av < ©%I'&),

To see that
@L(VA-H) > @L(FEC)

we show that in L(Vy1)[G] there is no surjection f : Vy 1 — ©X(A+1) Suppose this is not the
case, and let 7 € L(Vyy1) be a term for f. Then we have that g : Vi, x Coll(w, A) — ©F(Va+1)
defined by g(z,p) = aiff p IF 7(2) = « is clearly a surjection onto ©L(V*+1). But g € L(Vyy1),
which is a contradiction. Hence the theorem follows. O]

This theorem gives some evidence that the connection between large cardinals and de-
terminacy axioms holds even up to the level of very large cardinals. However, the nature
of this connection is far from understood at this point. For instance we have the following
open question of Woodin.
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Question 67. Suppose that A is a limit of supercompact cardinals and there is a proper class
of Woodin cardinals. Suppose that Iy holds at X. Let G C Coll(w, \) be V -generic. Then for

g = ()"0 L(Via)[G]
what is the largest Suslin cardinal of L(I'Y)?

Finally, we mention one negative result which is that uniformization does not follow from
U (j)-representability. This is a direct corollary of Theorem 61 and Fact 38.

Theorem 68 (C.). Assume Iy holds at A. Then in L(Vyy1) there is a relation R C Vyiq X
Vi1 which is U(j)-representable, but has no uniformization.

5.2 Inverse limit reflection

In this section we introduce the axioms inverse limit reflection and strong inverse limait
reflection. These axioms arose out of the reflection results in Section 3 and the structural
results in Section 4. In order to state these axioms we will need to use the terminology
introduced in Section 3. In addition we make the definition for E saturated that

CL(E)={(J,]) € E|Vn <wIK,k) e E(k [n=7]n)}.

Also let € be the set of inverse limits (J, 7)

Definition 69. We define inverse limit reflection at o to mean the following: There exists
A, @ < X and a saturated set E C & such that for all (J, ;) € E, J extends to J : Ls(Vig) —
Lo(Vyy1) which is elementary.

We define strong inverse limit reflection at o to mean the following: There exists A\, @ < A
and a saturated set £ C £ such that for all (J,7) € CL(E), J extends to J : Lg(Vsy1) —
Lo (Vy41) which is elementary.

We can also make this definition relativized to some X C V),;. To do this we let

EX) ={(J (il # <w))[Vi (Gi : (Vaga, X) = (Vayr, X)) and
J=joojio-: (Vig, X) = (Vagr, X) is o}

Here we let X = J71[X]. We modify the definition of saturated to X-saturated, requiring
in addition that J!'[X] = K'[X].

Definition 70. Suppose X C V,,;. We define inverse limit X -reflection at a to mean the
following: There exists A\, @ < A\, X C Vi, and an X-saturated set £ C £(X) such that for
all (J,7) € E, J extends to J : Ls(X, Vs,1) — La(X, Vay1) which is elementary.

We define strong inverse limit X -reflection at o to mean the following: There exists
Aa <\ X C Vi, and an X-saturated set £ C £(X) such that for all (J,5) € CL(E), J
extends to J : Lg(X, Vi,1) — La(X, Vig1) which is elementary.

We will say strong inverse limit X -reflection for strong inverse limit X-reflection at w,
and similarly for the other terminology.
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The following result was shown in [5].

Theorem 71. Suppose that there exists an elementary embedding

j: Le(Vat1) = Le(Vasr).
Then inverse limit reflection holds at o for all o < ©.
It was subsequently shown in [4] that:

Theorem 72. For any good o < ©FVa+1) if there exists an elementary embedding

Lotw (V)\H) — Layw (V)\H)

then strong inverse limit reflection holds at .

These results in fact extend slightly beyond Iy by the same proof to get the following.
Theorem 73. For any good o < @L(Vkﬁl’vﬂl), if there exists an elementary embedding
Lo (VL Vigt) = Lasw(VE | Vas1)
at+w YV x+15 VA+1 at+w YV 415 VA+1

then strong inverse limit Vﬁl-reﬂection holds at .

Some of the methods needed for proving these theorems were discussed in Section 3.
Theorem 72, however, requires a more detailed analysis of how inverse limits behave when
passing to limit roots. We refer the reader to [6] for a detailed analysis of inverse limit re-
flection results throughout L(V);1). A key question is whether these results can be extended
way beyond I through the E° hierarchy (see Section 6).

5.2.1 Consequences of inverse limit reflection

The reason for defining strong inverse limit X-reflection is its consequences for the properties
of X.

Theorem 74 (C. [5]). Let X C Viy1 and suppose that strong inverse limit X -reflection
holds. Then the following hold:

1. there are no disjoint sets Sy, Sy € L,(X, H(AT)) such that Sy,S2 € AT and both S;
and Sy are stationary (in'V);

2. every set X € L,(X,Vay1)NViio either has size X or contains a \-splitting perfect set.

Theorem 74 gives very strong consequences of strong inverse limit X-reflection for sets
X C Vi1, and it is this theorem which seems to give the most compelling AD-like properties
of any axiom defined for the context of V), so far.

We also have the following important corollary.
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Theorem 75. Suppose I is consistent. Then it is consistent that for some X C Vyyq1, X is
Icarus, but strong inverse limit X -reflection does not hold.

Proof. This follows immediately from Theorem 36. [
By Fact 38 we also have the following.

Corollary 76. Suppose Iy holds at X. Then in L(Vyy1) there is R C Viy1 X Viy1 such that
strong inverse limit R-reflection holds, but R has no uniformization.

On the other hand, it is not clear that any generic absoluteness results follow directly
from strong inverse limit X-reflection, which is one of the most compelling consequences of
the existence of U(j)-representations. Hence we are left with the following question.

Question 77. Does generic absoluteness between M, and Lo(Vii1) follow directly from
strong inverse limit reflection at o ?

5.3 j-Suslin representations

In [2] we defined tree representations for subsets of V)1 which also give generic absoluteness
between M, and L(V),1). These tree representations seem rather similar to Suslin repre-
sentations in the sense that they are not augmented by measures. On the other hand, they
are weaker than Suslin representations in the sense that instead of a tree on ordinals, they
are given by a tree on fixed points of iterates of a fixed embedding j. This definition is very
much motivated by U(j)-representations, which, through the Tower Condition, also give such
trees. However, we must add an additional requirement on the tree structure itself in order
to obtain a non-trivial representation and our generic absoluteness result. These represen-
tations, which we call j-Suslin representations, are therefore ostensibly not directly related
to U(j)-representations. At the end of this section we will define what is very naturally a
combination of j-Suslin and U(j)-representations, which we call a weakly homogeneously
7-Suslin representation. This stronger representation in fact does immediately give the two
weaker representations.

The main point of defining these representations was in order to help in the propagation
of U(j)-representations. However, we will see that j-Suslin representations (and therefore
weakly homogeneously j-Suslin representations) give a slightly stronger generic absoluteness
result.

For this section we fix j : L(Vy41) — L(V41) an elementary embedding with crit (j) < .
For k an elementary embedding we denote by k(,) the nth iterate of k, and we let

Folk) ={a € La(Vap)| k(@) =a},  F2(k) = |J F(kw),

n<w

and let
Ek(’f) = {k": Le(Vag1) — Le(Vaga)| 3, m(k)én) = k(m))}
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if k: Lo(Vag1) — Le(Vag1) is elementary and iterable. Also for a € Ly(Vyi1) let
E*(k,a) = {k € E*(r)| k(a) = a}.
Note that if j(k) = x then j(F2(j)) = FL().

Definition 78. For 7@ = (k;|i < w) increasing and cofinal in )\, we let WF be the set of
sequences s € Vy” such that

1. for some n < w, |s| = n and for all i <n, s(i) C V,,
2. if i <m < |s| then s(i) = s(m) N V..
Also let WF = {s € WE||s| = n}. In this context if z € Vy 1, we set
P=3r=(xNV,|n<w)eWF
where we use the first notation if the sequence K is understood.

Suppose that k < ©. Let X C V). We say that T is a (j, k)-Suslin representation for
X if for some sequence (k;|7 < w) increasing and cofinal in A the following hold.

1. T is a (height w) tree on V) x F¥(j) such that for all (s,a) € T, s € Wlil'

2. For all s € WF T, € Fg(j).
3. For all x € V41, x € X iff T} is illfounded.

We say that X is j-Suslin if for some k, X has a (j, k)-Suslin representation. If T satisfies
conditions 1 and 3 then we say that T is a weak (j, k)-Suslin representation for X.

By definition of the Tower Condition, if 7 is a U(j)-representation for X and F' is a
tower function for rng, then we immediately obtain a weak j-Suslin representation for X
from F. However, obtaining weak j-Suslin representations is not particularly difficult (and
apparently not useful). To see this consider the pointwise image of a set X C V),; under
the map jo, of L(Viy1) to M,. Every element of M, N Lg(Vy41) is fixed by an iterate
of 7, for j an Iy embedding, and hence we can obtain from this pointwise image a weak
J-Suslin representation for X. We will have to work considerably harder to obtain j-Suslin
representations.

Similarly we say that T' is a uniform (j, k)-Suslin representation for X if the following
hold.

1. T is a function on [A]<* such that for all s € [A\]“, if T'(s) is the tree whose nth level is
given by T'(s [ n), then T'(s) is a (height w) tree on V) x F¥(j).

2. For all s € [A]“ such that s is cofinal in A\, T'(s) is a (J, k)-Suslin representation for X.
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We now state the generic absoluteness results which follow from the existence of uniform
7-Suslin representations. In order to do this, we make the following definition about the
existence of uniform j-Suslin representations.

Definition 79. Suppose that j : L(Y, Vi) — L(Y, Vi) is an Io(Y) elementary embed-
ding. We say that the uniform j-Suslin conjecture holds in L(Y,V),1) if the following holds.
Suppose X C Vi1, X € L(Y, Vi) is such that there is an a € F§(j) and a ¢ such that
X is definable over Ls(Vii1) from a (so X € Fg(j)). Then for some £ < © there exists a
uniform (j, x)-Suslin representation 7" for X such that 7" € Fg(j).

The following is proved in [1], which shows that uniform j-Suslin representations do exist
in L(Vy41) under 1.

Theorem 80. Suppose that Iy holds at A\. Then the uniform j-Suslin conjecture holds in
L(Vas1). In fact if I holds at X then the uniform j-Suslin conjecture holds in L(V/\ﬁl).

Using this result, the following generic absoluteness results are shown in [2].

Theorem 81. Suppose that Iy holds at \ as witnessed by j. Then for K the critical sequence
of 7, if a« < © 1is good then for some & < X\ there is an elementary embedding

Ld(Mw[E] N V)\+1> - La(V)\Jrl)-

Theorem 82. Suppose that Iy holds at \ as witnessed by j. Suppose g € V' is P-generic
over M, where P € M,,. Also assume that cof(\)M=l9 = w. Then if a < © is good, for some
a < A\ there is an elementary embedding

La(My[g] N Vag1) = La(Vat1).

Note that this theorem gives a slightly stronger version of generic absoluteness than
the definition of generic absoluteness between M, and L(Vy,;) which we made above. In
particular we do not require that P € jy,(V)). This is potentially a significant strengthening
as for instance we cannot have j € M,,[g] where g is M,-generic for a forcing P € jg (V).
This reasoning however does not apply to forcings in M,,,.

Now we wish to define the notion of a weakly homogeneously j-Suslin representation. This
representation combines properties of a j-Suslin representation and a U(j)-representation,
and is important for [1] when propagating these representations throughout L(Viy1). We
use the same terminology as in Section 5.1.

Definition 83. Let X C V). We say that T is a weakly (0, @)-homogeneously (j, k)-Suslin
representation for X if T is a (j, k)-Suslin representation for X, and the following hold.

1. @ € [Lg(Va41)]* is weakly fixed by j.

2. For all z € Vi and A € A(6, ), if [T;] # 0 then
(T3] 0 [TF(A)) £ 0.
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We say that X is weakly homogeneously j-Suslin if for some d6,a and k, X is weakly
(0, @)-homogeneously (7, k)-Suslin.

Theorem 84 (C. [1]). Assume that j: L(Vyy1) — L(Vyy1) is an 1y embedding. Then every
subset X C Vyy1 such that X € L(Vyy1) satisfies the following in L(Vyi1).

1. X is U(j)-representable.
2. X s j-Suslin.
3. X 1s weakly homogeneously j-Suslin.

The proof of this theorem has many similarities to the propagation of scales in L(R).
In particular there is a version of a closed game representation (see [21] and [24]) which is
sufficiently weaker so that every subset of V), in L(V),1) has such a representation. This
fact together with the results of [3] are the key elements in the proof.

One unfortunate aspect of Theorem 84 is that the result is not local, especially not
as we saw of strong inverse limit reflection above (Theorem 72). While obtaining U(j)-
representations locally is basically impossible because the measures do not occur locally, this
is not obviously the case for j-Suslin representations. On the other hand, the definition of
U (j)-representations could be weakened in order to allow for such a local result. We state
these ideas in the following question.

Question 85. 1. Is there a local version of Theorem 847

2. Do U(j), j-Suslin, and weakly homogeneously j-Suslin representations follow directly
from strong inverse limit reflection?

An affirmative answer to (2) would presumably simplify the propagation of these repre-
sentations dramatically, and would perhaps answer (1) at the same time.

6 Beyond I

In the previous sections we for the most part concentrated on consequences of Iy and ]8# , and
so a natural question is to what extent these results extend beyond this point?® A natural
way of framing this question is through the AD-like axioms which we considered in Section
5. So we could ask, for which X C V), is it consistent that L(X, V) ;) satisfies these
AD-like axioms? As we saw, however, we can find examples of X C V,,; for which these
AD-like axioms fail in L(X,V),1), and so the answer to this question will most likely be
rather complicated.

On the other hand, there is a natural hierarchy of axioms beyond I, introduced by
Woodin, which do seem like good candidates for the propagation of these AD-like axioms.
This hierarchy, called the E°-hierarchy, was inspired by the hierarchy of models above L(R)

260f course another question is how to define such large cardinals.
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which give the minimal model of ADg. Very roughly speaking, the sequence E? is defined
by progressively increasing the size of ©L(Fa) and E? is such that

E? =Vy,o N L(EY).

This is achieved by either adding in the sharp of the previous model, adding in A-sequences of
the previous model, or adding in a predicate for the w-club filter on © of the previous model.
Alternatively the next model can be defined using the set of elementary embeddings on the
previous model. A key feature of this hierarchy is that it satisfies absoluteness properties
similar to L(Vy41).

The analysis of the E°-hierarchy is beyond the scope of this article, and we refer the
interested reader to [26], [8], and [9], and state the following question mentioned above.

Question 86. Do the AD-like axioms of Section 5 (U(j)-representability, (strong) inverse
limit reflection, j-Suslin representability, weakly homogeneously j-Suslin representability,
generic absoluteness) propagate throughout the EO-hierarchy?

We close with one additional question, first posed by Woodin, which seems to be at the
heart of the dynamics of passing to larger cardinals beyond I,.

Question 87. Suppose that j is an 1y embedding. Then does the following necessarily hold

L(j T Lo, (Vas1): Vas1) N Vg # L(Vag1) N Viaga?

If the answer is yes, and this property holds more generally, there would perhaps be a
straightforward way of building a hierarchy beyond Iy, by building models which include the
predicate for j up to some point. Understanding this question is therefore seemingly essential
to understanding how (and to what extent) the hierarchy of large cardinals proceeds beyond
1.
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