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Abstract
We show that the axiom Strong Inverse Limit Reflection holds in L(V)41) assuming
the large cardinal axiom Iy. This reflection theorem both extends results of [4], [5], and
[3], and has structural implications for L(V) 1), as described in [3]. Furthermore, these
results together highlight an analogy between Strong Inverse Limit Reflection and the
Axiom of Determinacy insofar as both act as fundamental regularity properties.

The study of L(V)41) was initiated by H. Woodin in order to prove properties of L(R)
under large cardinal assumptions. In particular he showed that L(R) satisfies the Axiom of
Determinacy (AD) if there exists a non-trivial elementary embedding j : L(Vyy1) = L(Vai1)
with crit (j) < A (an axiom called Iy). We investigate an axiom called Strong Inverse Limit
Reflection for L(V),1) which is in some sense analogous to AD for L(R). Our main result is
to show that if [y holds at A then Strong Inverse Limit Reflection holds in L(Vy;1).

Strong Inverse Limit Reflection is a strong form of a reflection property for inverse limits.
Axioms of this form generally assert the existence of a collection of embeddings reflecting a
certain amount of L(V),1), together with a largeness assumption on the collection. There
are potentially many different types of axioms of this form which could be considered, but we
concentrate on a particular form which, by results in [3], has certain structural consequences
for L(Vy41), such as a version of the perfect set property. Woodin [6] introduced a structure
called a U (j)-representation which has similar structural implications for subsets of V1, and
recently the author showed that I, implies that every subset of V1 has a U(j)-representation
(see [1]). Strong inverse limit reflection and U (j)-representations are therefore two alternative
methods for obtaining structural results for L(Vy1).

We highlight two applications of our results. The first is the following theorem which has
a reduced large cardinal assumption from the corresponding theorem in [3].

Theorem 1. Assume Iy holds at \. Let S, = {a < AT| cof(a) = w}. Then there are no
disjoint stationary sets Sy, Sy C S, such that Sy, Sy € L(Vyi1).

The second application is more conceptual, but perhaps more important. The following
theorem is proved in [3].

Theorem 2. Let X C V) ,1. Suppose that strong inverse limit X -reflection holds at 1. Then
X has the \-splitting perfect set property.



This theorem could be viewed as strong inverse limit X-reflection acting as a kind of
fundamental regularity property for subsets of V)1, similar to the role of AD in the context
of L(R). The following theorem, which we will prove, further strengthens this analogy.

Theorem 3. Suppose Iy holds at X\. Then for all X C Vyy1 such that X € L(Vyy1), strong
wnverse limit X -reflection holds at 1.

This theorem further strengthens the argument that strong inverse limit X-reflection
appropriately generalizes some of the aspects of AD in the L(V),1) context, as it is a property
held by all subsets of Vy;1 in L(Vy;1). In fact we will show that a more local version of
Theorem 3 holds giving us a very detailed view of the propagation of strong inverse limit
X-reflection in L(Vy11). For a more detailed discussion of AD-like axioms in L(V);1) see [2].

The outline of the article is as follows. In section 1 we review and strengthen some facts
on inverse limits and define the notion of (strong) inverse limit reflection. In section 2 we
consider extensions of inverse limits, improving on results of [3]. In section 3 we prove our
main result on strong inverse limit reflection. The main technical result needed is Lemma
40 which extends the pointwise monotonicity of square roots of elementary embeddings to
inverse limits. Finally in section 4 we clear up some minor details about the definability of
saturated sets witnessing strong inverse limit reflection.

1 Inverse Limits

In this section we give a brief outline of the theory of inverse limits as developed in [3]
proving some useful additional properties as well. These structures were originally used
for reflecting large cardinal hypotheses of the form: there exists an elementary embedding
Lo(Vig1) = La(Vas1). The use of inverse limits in reflecting such large cardinals is originally
due to Laver [4]. For an introduction to the theory of inverse limits see [4], [5], [3], or [2].

Suppose that (j;|i < w) is a sequence of elementary embeddings such that the following
hold:

1. For all i < w, j; : Vayr — Viq1 is an elementary embedding with crit (j;) < A 1.
2. There exists A < A such that crit j, < critj; < --- < X and lim,,, crit j; = A =: ;.
Then we can form the inverse limit

J:joojlo"'IVS\J—)V)\

by setting

J(a) = lim(jy o -0 ji)(a)
for any a € V5,. Note that this limit makes sense since a is fixed by all but finitely many
of the j;. Now J : V5, — V) is elementary, and can be extended to a ¥j-embedding

"'We will always be assuming that the critical points of our elementary embeddings are below A, even if
we do not explicitly say so.



J* : Vigr = Vo by J(A) = U, J(ANV3,) for (\;]i <w) any cofinal sequence in . We
refer to the pair (J, (j;| 7 < w)) as an inverse limit, and we will write simply

J=joojio--

to mean that (J, (j;]i <w)) is an inverse limit. Note that it is important that we keep
track of the sequence (j;|i < w) since it is not unique? for a given J, although we sometimes
suppress this in our notation; we will many times be sloppy and refer to an inverse limit as
“J7 or (J,7) instead of ‘(J, (j;| i < w))’, especially in our notation.

Suppose J = jgpojio--- is an inverse limit. Then for i < w we write J; := j;0 ;010 -+,
the inverse limit obtained by ‘chopping off’ the first ¢ embeddings. For i < w we write

JO = (Goo o)),

that is the inverse limit (J@, <j7(f)] n < w>) where j) | V3 = (Joo---0Ji)(Jn | Vi) for n < w.
Similarly for n < w,

Jr(:‘) = (Joo---05)(Jn), ‘ff) = (Joo---04i)(Jn)-

Then we can rewrite .J in the following useful ways?:

J=joojio--=---(Jooj1)(j2) © Jo(j1) © Jo
W0
= Jo ©J1 °Jo
and
J=joo i =jo(J1)ojo = J1(0) ° Jo
=(joo---0ji1)(Ji)ojoo-0jin=J" "V ojyo 0

for any ¢ > 0. Hence we can view an inverse limit J as a direct limit.
We let £ be the set of inverse limits. So

E={(J, Gili <w)|J=goojio---:Vy, 41— Vaua}
Various subcollections of £ can be defined as follows for v an ordinal:
E.={(J,]) € E|Vi < w (j; extends to an elementary embedding Lo (Vas1) = La(Vas1))}.

We say that a is good if every element of L, (V)41) is definable over L, (V1) from elements
of Vi;1. Note that the good ordinals are cofinal in ©. These ordinals are of particular
interest, as we have the following local existence fact.

2Consider grouping the embeddings as (jo o j1) 0 jg 0 - - instead of jo o j; 0 jp o -+ for instance.
3Here and below we write jo(j1) for the unique extension of jo(j; [ Vi) to an elementary embedding
Vat1 = Viag1. See [4] for a more detailed discussion of this phenomenon.



Lemma 4 (Laver [5]). Suppose there exists an elementary embedding

J ¢ Lat1(Vag1) = La+1(Vasr)
where a 1is good. Then &, # ().

The following shows a weak result about how the inverse limits J&Y fall into the sets
Ea-

Lemma 5. Suppose that « is good and (J, j) € Eqy1- Then for alln < w,
(0D (i Vi 2 n)) € Lo
Proof. This follows immediately from the fact that for any j, &k : Lot1(Vag1) = Las1(Vaga),

J(k | La(Vay1)) : La(Vag1) = La(Vat1)

is an elementary embedding. Note that the fact that « is good allows us to conclude that

kT Lo(Vag1) € Lag1(Vagr). O

A key question regarding inverse limits a they relate to reflection is to what extent J can
be extended beyond V3, ;. The point is that such extensions allow the transfer of properties
of L(Vy41) to L(Vi,,) for A < A. The following summarizes some results in this direction.

Theorem 6. Let (J, (j;| i <w)) € € be an inverse limit.
1. (Laver [4]) Suppose for all i < w, j; : Va1 — Vg is elementary. Then
J: Vi — Va
15 elementary.
2. (Laver [5]) Suppose for all i < w, j; extends to an elementary embedding
Lyt iw(Vat1) = Lot 4o (Vaga).
Then J extends to an elementary embedding

L;\+(Vj\+1) — L>\+(V)\+1).

3. (C. [3]) Let a be below the first ¥1-gap of L(Vay1) and suppose there exists an ele-
mentary embedding Laywi1(Vais1) = Lavwi1(Vas1). Then there exists an inverse limit
(K, (ki|i < w)) such that for some & < A\, K extends to an elementary embedding

La(Vii1) = La(Vag1)-



Notice that in this theorem the third result is not quite as strong as the first two, in the
sense that it does not give directly that every inverse limit whose embeddings are sufficiently
strong is able to reflect to a. This distinction is at the heart of the theorems in the present
paper, as the strongest forms of reflection become more difficult to achieve for « large below
O. We define some notation in order to give a stronger form of the third result which more
closely mirrors the first two.

First for elementary embeddings j, k : Vy\y1 — Vii1 we say that k is a square root of j if
k(k [ Vy) =7 Vi We also write k(k) = j, slightly abusing notation as we did above.

There is a corresponding notion for inverse limits. Suppose

(; (il i < w)), (K (ki i <w)) € €.

Then we say that (K, (k;|i < w) is a limit root of (J, (j;|i < w)) if there is n < w such that
j\J = S\K and
Vi < n(k; = j;) and Vi > n (k;(k;) = ji)-
We say (K, k) is an n-close limit root of (J,7) if n witnesses that (K, k) is a limit root of
(J,7). We also say that (K, k) and (J, ) agree up to n if for all i < n, j; = k.
The next lemma is a basic fact about the existence of inverse limits, which is proved
using the following lemma about the existence of elementary embeddings.

Lemma 7 (Laver [5]*). Suppose a < 3 are good. If (J, ;) € & then for all A € Vi,+1 and
B € Vi there exists a (K, k) € E, such that K is a 0-close limit root of J, K(A) = J(A)
and B € rng K.

This lemma follows from the following existence lemma for square roots.

Lemma 8 (Martin, see [5]). Suppose o < ( are good and j : Lg(Vai1) — Lg(Vag1) is an
elementary embedding. Then for any a,b € Vyyq there is k : Lo(Viy1) — Lo(Vay1) such that
a € rngk, j(b) = k(b) and k(k [ V\) =7 [ V).

The inverse limits J" " which we defined above behave nicely with respect to limit
roots.

Lemma 9. Suppose that (J,}), (K, E) € & and K is a 0-close limit root of J. Then for all
n<w, (K,(Ln_l), <k§"_1)]i > n>) is a 0-close limit root of (J,(Ln_l), <ji(n_1)|i > n>)

Proof. Tt is enough to show the following: if k1 and ko are square roots of j; and js respectively
and jo € rngky, then ky(ks) is a square root of j1(j2). But by Yg-elementarity, we have that
ki(ko) is a square root of ki(j2). But ki(j2) = j1(j2) since jo € rngk;. Hence we have the
fact we wanted.

To see that the lemma follows, we see for instance that (K o <k§0)\i > 0>) is a O-close

limit root of (JI(O), <jl-(0)|z' > O>) by applying the above fact to kg, k,, jo, jn for alln > 1. [

4The lemma as stated appears in [3], although the proof is the same as the corresponding lemma in [5],
which says nothing about limit roots.



By a very similar proof we have the following fact, which shows how arbitrary limit roots
behave when passing to inverse limits J" " and K.
Lemma 10. Suppose that (J,}), (K, lg) € & and K is an i-close limit root of J. Then for
alln < w, (K,S,n_l), <k:i(n_1)|i > n>) is an f(i,n)-close limit root of ( D) <ji(n_1)|i > n>),
where f is defined as follows.

flin) = {i—n ifn <1

0 otherwise.

One theme in the study of inverse limits is that the behavior of an inverse limit mimics
that of its constituent embeddings. One example of this phenomenon is given by the next
two lemmas. We will see this theme in the next section as well, and it is at the heart of our
proof of strong inverse limit reflection (see Lemmas 38 and 40 for instance).

Lemma 11. Suppose that 3,k : Vi1 — Viyq are elementary and k is a square root of j. 1
if A€ rngk, then k(A) = j(A). Also, if C € Viy1 and j(C) € rngk then k(C) = j(C).

Proof. To see the first part suppose k(B) = A, and notice (taking liberties with our notation)
k(A) = k(k(B)) = k(k)(k(B)) = j(k(B)) = j(A).

For the second part, since j € rngk, we have that C' € rngk, and hence the result follows
from the first part of the lemma. O

We can show a very similar property for inverse limits.
Lemma 12. Suppose that (K, k), (J,]) € € and (K, k) is a limit root of (J,]). Let A = \;.
Suppose A € V5 and A = J(A). Then if A € rng K, we have
K(A)=A=J(A).
Proof. Let A, for n < w be defined by induction as
Ao = (jo) ' (A) and for n. >0, A1 = (Jny1) " (An).

Then we have (case 1)

ko is a squareroot of jo and A € rng ky N rng jo
= Ao = j '(A) € rng ko = ko(Ag) = jo(Ao) = Ao € g K,
and (case 2)
k’o = j() = ko(Ao) = jo(Ao) = AO € I'Ingl.
Similarly, for n > 0, (case 1)

kn.1 is a squareroot of j,.1 and A, € rngk, 1 Nrngj, 1
= An+1 = ]7:41—1(/471) € mg k:n—&-l = kn-i-l(An-i-l) = jn+1(An+1) = An-i-l € g Kn+2



and (case 2)

kn+1 - jn+1 = kn—l—l(An—‘rl) - jn+1(An+1) = An+1 S mg Kn+2-

Hence we have that B B
K(A)=A=J(A)
as in the proof of Lemma 7 (see Lemma 2.9 of [3]). O

A very similar proof shows the following lemma, whose proof we leave to the reader.

Lemma 13. Suppose that (K, k), (J,]) € € and (K, k) is a limit root of (J,7). Let A = Xy.
Suppose a € Vyy1 and a € tng(kgokyo---ok,) for alln <w. Then we have for any n < w,

(kgokio---oky)(a) = (joojio--0jn)a).

The next lemma gives a more complete picture of the phenomenon in the previous two
lemmas on the agreement between an inverse limit and a limit root. In particular it is
informative to realize that, using the notation as in the statement below, there is an ¢ < w
such that crit Ki(i_l) > X\ + 1, and hence A € rng Ki(i_l) for any A € V3, 41. The conclusion
of this lemma must therefore be limited in its scope, since otherwise it would demand too
much agreement between J and K.

Lemma 14. Suppose that (K, /;), (J, j) €&, (K, l;) is a limit root of (J, j) and for all 1,
k() r V)\, ce 7ki r V,\ € rngk:iﬂ.

Let A = \g = \; and B
Ai = (Joo - 0ji1)(A).
Suppose A € Vy,41 and A = J(A). Then if i is such that A € mgKi(i_l), then

K (oo -+ ji1)(A)) = A = J(A),

Proof. Without loss of generality we assume ¢ = 1. Then we have that A € rng kgo). But
since kg [ Vi € rngky, we have jo [ V) € rng kio). Hence jo(A) € g kEO). And so since k§0)
is a square root of jio), we have that

K Go(A)) = 52 Go(A)) = (o 0 51)(A).

And since
(k)71 (A), K € mg kY

we have A € rng k:éo). Furthermore k¢ | V) € rngky implies that jo [ V) € rng kéo), SO we
have that jo(A) € mgk!”. And hence that

KO (Go(A)) € g kO (k87) = kY.



But this shows that
kY (B (o(A))) = 357 (K2 Go(A))) = 557 (G (o(A))) = (o © i1 © j2)(A)

since kél) is a square root of jél).
Continuing this way we have that

(oo o jin)(A) = (k" o~ 0 k%) (jo(A)
for all + > 0, which proves the lemma. O

The final variation on this theme, which combines the proofs of Lemma 7 and the previous
few lemmas is the following, whose proof we leave to the reader.

Lemma 15. Suppose « is good and (J,j') € Eur1- Then for any a € Vi1, there is a
(K, k) € &, satisfying the following:

1. Foranys <n<m, (ko k‘,(ls_il ook (a) = (55 Ojfﬁl o---05%)(a).

2. For anys<n<m,a¢€ rng(k}({s) Ok(il O"'Okﬁri))~

n

We now come to an important definition for inverse limits, which highlights a useful type
of collection of inverse limits. This definition arises out of the useful difference between
square roots and limit roots: that being n-close for larger and larger n allows the existence

of a sequence <(Jz,jz)| 1< w> of inverse limits with (J*, 77+1) a limit root of (J¢, ;%) for all
1< w.

Definition 16. Suppose E C €. Then we say that F is saturated if for all (J, ;) € F there
exists an i < w such that for all A € V5, and B € V)41, there exists (K, E) € F such that
(K, E) is an i-close limit root of (J,7), Ki(A) = Ji(A) and B € rng K;. We set i(E, (J, 7)) =
the least such 1.

Note that if (K, k) is an i-close limit root of (J, }) and K;(A) = J;(A) then K (A) = J(A).
However, we cannot conclude that B € rng K if B € rng K;. For instance if i = 1 then we
always have that crit (J) = crit (K) ¢ rng K, while of course crit K € rng K.

We now define a natural closure operation on sets of inverse limits.

Definition 17. Suppose E C £ is a set of inverse limits. We say that (K, /2) is the common

part of <(K”, ) n < w> if for all i < w there is an n < w such that for all n’ > n, k; = k.

We define CL(FE) to be the set

CL(E) = {(K,k) € &3 <(K",lgz)|2 < w> ((K, k) is the common part of <(K’,Ez)|z < w> :
Vi < wAx = Ay and ((K', k) € E)}.



The set CL(FE) arises naturally in the study of inverse limits as a direct result of con-
sidering sequences of inverse limits which are limit roots of one another. That is, for a

sequence <(Ki, k)i < w> of inverse limits such that (K™, K1) is a limit root of (K, k)

for all 4 < w, it must be the case that this sequence has a common part inverse limit (X E)
This follows from the fact that there cannot be an infinite sequence jg, ji,... where j; ;1 is
a squareroot of j; for all 7 < w, since their critical points must be decreasing. Considering
such sequences and their common part are important, for instance, in the proof of Theorem
25 which appears in [3]. There it is important that certain properties of the inverse limits
along the sequence are maintained in the common part (K, /;) This is in a sense what the
property strong inverse limit reflection will say below.

Lemma 18 ([3]). Suppose that « is good and (J,]) € Enyw. Then there exists a saturated
set E C &, such that (J,j) € E.

See Lemma 37 below for the proof of an even stronger result. Saturated sets are in a
sense large, so the following theorem extends part 3 of Theorem 6 and is along the lines of
parts 1 and 2.

Theorem 19 (C. [3]). Let o be such that Lo(Vii1) %?“U{VA“} Lotv1(Vag1) and suppose
there exists an elementary embedding Loyo,(Vis1) = Lavw(Vay1). Then there exists a sat-
urated set E of inverse limits, a A and an & such that for all (K, (k;|i < w)) € CL(E), K
extends to an elementary embedding

La(Vis1) = La(Vata)-

We make the following definitions which capture the conclusions of many of the reflection
theorem above.

Definition 20. We define inverse limit reflection at o to mean the following: There exists
A, @ < A and a saturated set £ C £ such that for all (J,j) € F, J extends to

J: La(Vxi1) = La(Vag1)

which is elementary. )
We define strong inverse limit reflection at o to mean the following: There exists A\, & < A
and a saturated set F' C & such that for all (J,7) € CL(E), J extends to

J: La(Vai1) = La(Vag1)
which is elementary.

We will also need the notion of inverse limit X-reflection where X C V). Similarly as
before we let
EX) ={(J, Gili <w)[Vi(ji : (Vas1,X) = (Vag1, X)) and

J=jgoogro-: (Vi, X) = (Vagr, X) is X}

Here we let X = J71[X]. We modify the definition of saturated to X-saturated, requiring
in addition that J'[X] = K'[X].



Definition 21. Suppose X C V),;. We define inverse limit X -reflection at o to mean the
following: There exists A\, & < A\, X C Vi, and an X-saturated set £ C £(X) such that for
all (J,7) € E, J extends to J : Lg(X, Vs,1) = La(X, Vag1) which is elementary.

We define strong inverse limit X -reflection at o to mean the following: There exists
A\ a@ <\ X C Vs, and an X-saturated set £ C £(X) such that for all (J,7) € CL(E), J
extends to .J : Lg(X, Viy1) = La(X, Vay1) which is elementary.

The following result (whose proof we will use below) was shown in [3].

Theorem 22. Suppose that there exists an elementary embedding
j: Le(Vat1) = Le(Vasr).
Then inverse limit reflection holds at o for all o < ©.
We can also rephrase Theorem 19 as follows.

Theorem 23. For any o such that La(Vyi1) %YM’IU{VA“} Lot1(Vat1), if there exists an
elementary embedding
Lavos(Vat1) = Lavw(Vat)

then strong inverse limit reflection holds at a.

Our main result will be to generalize this result to any @ < ©. Hence we will obtain the
following.

Theorem 24. For any good o < ©OFVa+1) if there exists an elementary embedding

La+w (VA—H) — Loc-i-w (VA-H)

then strong inverse limit reflection holds at «.

Strong inverse limit reflection has stronger consequences that inverse limit reflection. For
instance the following is proved in [3].

Theorem 25. Let o < © be good and suppose that strong inverse limit reflection holds at
«. Then there are no disjoint sets Sy, S2 € Lo(Viy1) such that S1,Se C At and both Sy and
Sy are stationary (in V).

Hence these two theorems immediately give Theorem 1 above.

2 Coherent extension of inverse limits

As our goal is to obtain strong inverse limit reflection, we are very much interested in the
extending the embedding J for an inverse limit (.J, 7). We first want to show that (for strong
enough (.J, 7)) if J extends to a for a good, then the extension is in a sense unique. We then
show that if a limit root of J extends, so does J. We will ultimately exploit this for long
sequences of limit roots. First we prove the following lemma.

10



Lemma 26. Suppose that a is good, (K, IZ) € &, and K extends to an elementary embedding

A

K Ja(V;\+1) — La(V)\+1).
Define My C Jo(Vay1) as

Mg ={a € Jo(Viy1)| FA € Viyi(a is definable from A
over Jo(Vas1) and A € g K)}.

Then

A

My = K[Ja(vi\ﬂ)]
and K is gwen by the inverse of the transitive collapse of M.

Proof. To see that Mg = K[Js(V3,1)], suppose that a € K[J5(Vi;)]. Then since a is good,
there exists an A € V), and a formula ¢ such that a is definable from A and ¢ over J,(Vy41).
So Jo(Vyy1) satisfies that there exists an element B € V), such that a is definable by ¢
from B. Hence for @ = K~ '(a), we have that J;(Vj,,) satisfies that there is B € Vi, such
that a is definable by ¢ from B. Let B’ witness this statement. Then by applying K we
have that a is definable from K (B') by ¢ over J,(Vii1). On the other hand, if a is definable
from some A € rng K N Vi, over Jo(Viy1) then clearly a € rng K by elementarity.

The fact that K is the inverse of the transitive collapse of M follows immediately from

~

the fact that My = K[Js(Vs)]- O

Lemma 27. Suppose o < © 1is good, that (J,;') € & and J extends to an elementary
embedding )
J: Ja(Va,+1) = Ja(Vas1)

for some a. Then for all B > «, if J extends to an elementary embedding

A

T2 J5(Vs,) = Js(Vasr)
with o € rngJ*, then (J*)"Y(a) = @ and
J | Jéz(VZ\Jﬂ) =J.
Proof. The main point is that by the previous lemma

mg.J = M5 = mg (J) N Ja(Vas),

and hence both .J and (J*) N J,(Vis) are given by the inverse of the transitive collapse of
M§. So they must be the same. O

We now want to show that if a limit root of J extends to some «, so does JJ. We need a
slightly stronger notion of extension which we now define.

11



Definition 28. Suppose a is good. We say that (J, j) € &, extends coherently to « if for all

n < w there are @&, and A, such that J"Y extends to an elementary embedding

JO La, (Va,1) = La(Vas)
and such that for all n < m,

F(n— F(m— -(n— -(n—1 -(n—1
JED = g o jir o i oo i,

Lemma 29. Suppose that o is good and (J, j) € Ear1. Then if J extends to an elementary
embedding J : Jz(Viy1) = Jo(Vag1) for some &, then (J,j) extends coherently to «.

Proof. First we have that for all n < w, J, extends to an elementary embedding

jn = (joo--- ojn—l)_l oJ: Ja(Vaz1) = Ja(Vasr).
This follows since « is good and
Jn — (]0 O .- Ojn—l)_l o J

Now by elementarity, since (.J, j) € Eut1, We can apply jgo- - -0j,_1 to the above statement
to see that J{" " extends to an elementary embedding

j,ﬁ"’l) : Jdn(VZ\nH) — Ja(VAH)
where @, = (joo -0 jn,_1)(@) and A, = (joo -+ 0 j,_1)(\) and

qun_l) — (]0 O .- Ojn_l)(jn)'

To see the coherency condition, we compute for any a € V5, if for instance jl(c_z) = a,
then applying jo to this statement we have that

J = (jo o J1)(@) = 7 (jo(a)).

Similarly we have that

~

J=Goojio-jurodu)@) =" (oo 0 ju) (@)
Now for n < m < w, we can apply these facts to J, and m to see that
Ju= (o0 jmt) (i) © 4 -0 .
But then applying (jo o -+ j,—1) to this statement we have that
JrD = Jir Vo ji oo iy,

which is what we wanted. [

12



We introduce the notion of extending coherently, because our arguments below will in-
volve passing to the extensions of (J~1), <ji(n_1)|i > n>) Clearly, if (J,7) € &, extends

coherently to «, then for all n < w, ( (1), <ji(n_1)]i > n>) € &, extends coherently to «,

which helps in making such arguments. On the other hand this does not seem quite true for
instance for the assumption (J,7) € Expr.

We now show that if an inverse limit has a limit root which extends to an elementary
embedding, then it extends as well and in fact factors through its limit root, in some sense.

Lemma 30. Suppose a < © is good and that (K, E), (J, j) € &, and (K, E) is a limit root of

(J,7). Suppose that (K, k) extends coherently to o to an elementary embedding
K Ja(Vasr) = Ja(Vasr)

and that for (a,|n < w) defined by &, = (koo ---ok,_1)(@) we have for some n < w that
crit(K,(lnfl)) > X and &, € ™mg(joo -0 jn_1). Then for some B > &, J extends to an
elementary embedding

T J5(Vag) = Ja(Vasr)-

Proof. Since K extends coherently to «, for all n < w, K& extends to an elementary
embedding A
KUY Jay (V1) = Ja(Vaga)

where A\, = (kg o -+ 0k,_1)(N).
Now let n < w be such that crit (K,(Lnfl)) > Xand @, € g (joo---0jn_1). Set

B= (oo 0jn-1)" (an).
Then by Lemma 14 we have that for all A € Vy,,,
KM ((joo 0 ju-1)(A) = I (oo 0 ju1)(A)) = J(A).
Hence we have that
K" Vojoojio-ojui [ Vi =J: Vi = Vaga
And so we have that
K™Yo joojio-oju | J5(Vap) : J5(Vin) = Ja(Var)
is the desired extension of J. -

The previous lemma required that some @, be in the range of the fragments of J. The
next lemma shows that we can always find such a K where this occurs if the embeddings
constituting J are elementary enough.

13



Lemma 31. Suppose a < © is good and (J,f) € Eqr1. Suppose further that there is
a (K' K € &, a limit root of (J, j) such that for some a, K' extends coherently to an

elementary embedding )
K"t Ja(Vxep1) = Ja(Vaga).

Then there is a (K, k) € &, a limit root of (J,]) such that for some n < w we have
crit (KS™V) > Xy, K&V eatends to an elementary embedding

KO Y Jo(Va 1) = Ju(Vag)

n

for some a and N\, with & € rng(joo---0jn_1). Furthermore (K, E) extends coherently to «
to an elementary embedding.

Proof. Let (J,7) € Eay1 be as in the hypothesis. Fix § < A such that § > A\; and 6 € mg.J

and fix n such that crit ( ,S”‘”) > 4.

We claim that that for some & and n < w there is (K™, /2”) € &, a O-close limit root
of J&"™Y such that crit (K™) > § and (K™ k™) extends coherently to o to an elementary
embedding A

K" Ja(V3,11) = Ja(Vag)-
This follows since, taking (K, E) witnessing our assumption on (J, j), we can find n large
enough so that (K™, k") = (K™Y, <k:§n_1)|i < n>) witnesses this claim. To see this, first
of all we have that since K maps Ak cofinally in A, for § < Ak such that K(g) > § we can
take n such that crit (k) > d. So in that case

crit (K1) = crit (k0"D) = (kg o - - - 0 ky_y)(crit (k) > K(8) > 0.
On the other hand, Lemma 10 since (K, /;) is a limit root of (.J,7), for large enough n,
(K, <k§”71)\i > n>) is a O-close limit root of (J{"™", <ji(n71)|z' > n>) So the claim
follows.
Let 75 : Jos1(Vay1) = Jag1 be the elementary extension of j; for ¢ < n. Then

Jfln_l), 5, A\, € I0g (Jjoo---04r 1)

we have that @ € rng(joo -+ 0 j,_1), and in fact for some (K", E") satisfying the above
claim, (K", k") € rng (ji o -+ 0 j;_1). Now let (kI'|i < w) be such that

(g oo in) (K] <w)) = (ki <w).
Let (K*,k*) be the inverse limit
K*=joo---0jy_10kioklo--.
We have (by the elementarity of joo---0j, 1) that (K*, E*) € &,, and that it is a limit root

-,

of (J,7). Hence since we have (KZ’(”_U, <k‘:’(n_1)|z’ > n>) = (K™, k™) and hence (K*,k*)

witnesses that the lemma holds. O

14



Putting the previous two lemmas together, we obtain that a very large collection of
inverse limits extend to elementary embeddings.

Lemma 32. Suppose o < O is good and (J, j) € Eqr1- Also assume that there is a saturated
set B C E,y1 such that (J,5) € E. Then for some &, J extends to an elementary embedding

T Ja(Va 1) = Ja(Vae).

Proof. Let J be as in the hypothesis. Then by the proof of Theorem 22 (see [3]) there is a
sequence <(K n | n < w> such that the following hold:

1. K= J and for all n < w, (K™, E”) € i,
2. for all n < w, (K™ k™) is a limit root of (K™, k™),

3. thereis a B and an ng such that for all n > ny K" extends to an elementary embedding

~

K": JB(VS\J"F]-) = Joa(Vag1).

By applying the previous three lemmas we have that there must be some &,,,_1 such that
K™~! extends to an elementary embedding

K™ o (V1) = Ja(Vas).

And similarly by induction we have that there are @, 1, ..., ag such that for all i < ng, K*
extends to an elementary embedding

K': Ja,(Vi, 1) = Ja(Vasr)-
So considering 7 = 0 the lemma follows. n

Theorem 33. Suppose o < © is good and (J, j) € Eqtw- Then for some &, J extends to an
elementary embedding X
J . J&(VS\J+1) — Ja(V)\+1>.

Proof. Tt is proved in [3] that for all (J, j) € Eqtw, there is a saturated set £ C &,44 such
that (J,j) € E. Hence by Lemma 32, J must extend to an elementary embedding

T+ Ja(Vi, 1) = Ja(Vaga)

for some a. n
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3 Limit root extensions

Our goal in this section is to get a more detailed picture of the relationship of the extension
of J and the extensions of its limit roots. The key fact will be Lemma 40 which basically
says that the extensions of sequences of limit roots are pointwise non-increasing. From this
fact we will quickly obtain strong inverse limit reflection.

We first define an ordering on certain equivalence classes of elements of V). This is a
natural ordering generated by an inverse limit (.J, j), and it turns out to be a well-ordering
if (J, j) € &;. It is really just the equivalence classes given by the direct limit system, when
viewing J as a direct rather than inverse limit. Hence, the wellfoundedness of this ordering

is simply the wellfoundedness of the corresponding linear iteration given by J.

Definition 34. Let (J,]) € &, and define the ordering <; on tuples (a,n) for & < A and
n < w as follows:

L. (a,n) <; (B,n) if a < 8.

2. (a,n) <y (B,m) if n <m and (jy(bn_l) o oj,r(:__ll))(a) < pB.

3. (a,m) <y (B,m)if m<nand a< (jfnm_l) o ojﬁlnffl))(ﬁ).

We put (a,n) ~; (B,m) if (B,m) <; (a,n) and (a,n) <; (5,n). Let [a,n]; be the
equivalence class of (o, n) under the equivalence relation ~;. Let Z”/ be the set of equivalence
classes [, n]; for @ < A. Let Ié( my De the set of equivalence classes [a,n]; such that

(0,m) <5 (7, m). ’

As mentioned above, the equivalence classes [, n|; can be thought of equivalently as
elements of the direct limit of the iteration - -- o jél) o j%o) 0 jo. To see this, note that for any
n < m we have by a simple induction that

‘(n—1) .(n—1) .(m—2) .(m—3)

Jn " oD,

O O0m-1 TJIm-1 ©JIm-2 o'”ojn—&-lojn

To see this, consider the following computation
Jo0J1 00 Jne1 = Jo(j1) © Jo(J2) © - - © Jo(Jn-1) © Jo
= Jo(J1) (Jo(J2)) © Jo(41) (Jo(J3)) © - - - © Jo(j1) (Jo(Jn-1)) © Jo(j1) © Jo
= jo(j1(j2)) © Jo(j1(J3)) © - - - 0 Jo(J1(Jn-1)) © Jo(j1) © Jo

(1 (1 (1 (0 .
=53 oy oo gy ot oo

(n—2 (n—3 -(0 .
:]7(1—1)037(1—2)0"‘0‘7%)0]0

Hence Z7 is clearly linearly ordered by < since these are equivalently the ordinals of the
direct limit.
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Lemma 35. Suppose (J,]) € &. Then (I7,<;) is a well-ordering.

Proof. Suppose that ([a;,n;]s|i < w) are such that (a;,n;) > (ajy1,n541) for all i < w. By

=

Lemma 15 we can find (K, k) € & with the following properties:
1. For all® i,n,m < w, and (a, s) € [az,nil 7,

(j(n—l) o.. 'j,(f:ll))(a) _ (kﬁbn—l) O ]gﬁgjll))(oz).

n

2. For all i < w and (a,n) € [y, n;]; we have that

aermg(kpo---0ky_1).

It is then easy to see that (1) implies that for all i < w,
lai,nily C e, nil i,

and (2) implies that for all ¢ < w, there exists an o} such that
(a;,0) € [, i)k

But then, since we can view the equivalence classes [a;, ;] as elements of the corresponding
direct limit system, we have that for all ¢ < w, (a;,n;) >k (@it1,ni41), and hence o) > ol ,
a contradiction. O

We now define an iterated version of being a limit root for inverse limits.
Definition 36. For o < w; we define an a-limit root sequence <(K”, k)| n < a> by induction
on « as follows. A 1-limit root sequence is just <(K0,/;0)> such that (K° k%) e £ For

a =+ 1 a successor, <(K’7, E”)\ n < a> is an a-limit root sequence if <(K’7, E")\ n < ﬁ> is
a (-limit root sequence and the following hold:

1. If B is a limit, then (K7, ]}3) is the common part of the sequence <(K77, E")| n < B>.

2. If 8 is a successor, then (K k%) is a limit root of (KA1, k1),

If « is a limit, then
(K", Ny < a)

is an a-limit root sequence if for all g < a,

(" BNn < 8)

5This condition might be somewhat confusing because it is really overkill. The point is that when passing
from (J,7) to (K, k), everything we care about is preserved. It is easier to state this condition as is than to
write down the particular relationship between ¢,n, m, and s which we need.
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is a (-limit root sequence.
We say that (K, k) is an «a-limit root of (J, ") if there is an a + 1-limit root sequence

<(Kn,/2n)|n < oz> such that (K0, &%) = (J,7) and (K, k*) = (K,&). So (K,k) is a limit
root of (J, ) iff (K, k) is a 1-limit root of (J, ).
Suppose v < O is good and suppose that ¢ : @ — w is a function. Then we say that

(K™, E”)\ n < a> is an a-limit root sequence following c at ~y if the following hold:
1. For all n < a, (K", k") € &,.

2. Suppose that « = 4+ 1 is a successor. Then (K“,E"‘) is a c¢(a)-close limit root of
(KP kP).

We also say for embeddings j, % : Va1 — Vi1 that k is an n-square root of j if for some
sequence jo, J1, - - - , jn Oof embeddings V\,; — Vyi1 we have that jo = 7, j, = k and for all
1 < n, ji41 18 a square root of j;.

The next lemma shows the existence of long limit root sequences. The proof in fact also
gives Lemma 18 above.

Lemma 37. Suppose that v < © is good, a < wy, and ¢ : o — w s an injection. Suppose
that (K°,k°) € Ev+w. Then there is <(K’7, k)| n < a> an a-limit root sequence following c
at 7.

Proof. First, using Lemma 7, let (K, k) be a 0-close limit root of (K°, k°) such that for all
i <w, k! extends to an embedding

Jtir1Vag1) = Jyqiv1(Vagr).

For o/ < a such that o = 54%— 1, having defined the sequence below 9/ , we choose, as in
the proof of Lemma 7, (K, k%) to be a c(a/)-close limit root of (K, k%) such that for all
i € [e(e),w), if k¥ extends to an embedding

Srs1(Vag1) = Jpsn(Vaga)

then k2 extends to an embedding
Jrtss(Vaer) = Sy, (Vi)

That is we apply Lemma 8 by induction to each element of the sequence kP, For o/ < a a
limit, we simply take (K, k%) to be the common part of <(K77, k)| n < o/>.

Clearly this construction succeeds, as for all i < w, the set {¢/ < alec(f) < i} has
cardinality less than or equal to 7, as c is injective. O

We note the following fact about square roots of elementary embeddings, which we will
extend to inverse limits.
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Lemma 38. Let a be good. Suppose that j, k : Lov1(Vig1) = Lav1(Vag1) and k is a square
root of j. Then for all f < o+ 1, we have that k() > j(B).

Proof. Fix a good and j and k as in the hypothesis. We prove this by induction on 5. If g
is a successor or a continuity point of j then there is nothing to prove. So assume that [ is a
discontinuity point of j. Let v = sup 57 3. We have by induction that v < sup k7 3. Suppose
for a contradiction that k(8) < j(8). Then j(5) is definable in L,41(Vi41) from j [ V) and
k(B), as the least image point above k() of the unique extension of j | V) to a. But then
j(B) € gk, and since j € rng k, we have that 8 € rngk. But then k(3) = j(5), since k is
a square root of j, a contradiction. O

This lemma can of course be extended by induction to j and k such that for some sequence
JosJ1, - - -, jn We have that jo = 7, j, = k and for all ¢ < n, j;y1 is a square root of j;. In
the next lemma we will use this slight extension of Lemma 38 which holds for the individual
embeddings making up (J,7) and (K, k) such that (K, k) is an a-limit root of (J, ), for
instance.

In order to show that inverse limits have the property in Lemma 38 as well, we first show

the following technical result.

Lemma 39. Suppose a < © is good, 6 +1 < wy, and <(J7,j'7)] v< 4+ 1> 15 a 0 + 1-limit

root sequence from €. Then for all [3,n] o, there is an ng < w such that for all v < 6 + 1
and m,m’ > ng, if (51, m), (B2, m’') € [B,n] 0 then

(51, m) ~Jv (52, m’)

and hence if J7 extends coherently to o+ 1 to an embedding

J7: Jaﬁl(vﬂﬂﬂ) = Jat1(Vas1)

then we have

j%(mfl) (61) — j;:/(m/_l) (ﬁ2)

m

Proof. Fixing [, n] 0, we prove first that for each v < § there is such an ng, the least which
we call n,. The full lemma follows by noticing that for v a limit, n, > sup.,., n,. The
proofs of these two facts are basically the same.

Let j; = j? and k; = j] for i < w. So K = J7. Then by Lemma 38 and the definition
of a limit root sequence we have for all £ < X\ and i < w that k;(§) > j;(£). Hence for all
n < w, if (ay,n), (11,7 + 1) € [B,n]; and (ay, n) »#x (@nt1,n + 1) then
B (o) > amgr = 50 (om).

n n

Hence, if there are infinitely many n < w such that

(anan) *K (an+17n+ 1)a

19



then ([a,, n]k| n < w) contains an infinite decreasing subsequence in the <y ordering, which
is a contradiction to the well-foundedness of <.
For the limit step, basically the same proof works, since if v is such that

D aw) > gy (ay),

then for all 4" € [y, d], by Lemma 38

37D () > joD ().
And hence the lemma follows. O]

We need the foll(lwing notation. Let ~ be the equivalence relation defined as follows.
Suppose (K, k), (K’ k") € £ are such that for some n and m,

(koo ok 1)({kn kni1,...)) = (kio---okl _ <km, s - - >)

Then we put k ~ K. To see that ~ is transitive, first note that if k ~ k' as witnessed by
n and m, then for any s < w, n + s and m + s also witness this. To see this consider the
computation:

(koo 0kn_10kn)({kns1,kni2,...))
= (koo okn1)(kn)((koo - 0kn1)((kns1, kni2,...)))
= (Ko o k) (K ) (g 0+ 0 ko) ({Bmsrs s --))
= (kjo-- okl okl) (K1, kmsa,-..)).

The general fact then follows by induction. Transitivity of ~ follows immediately. We let
[k]~ denote the equivalence class which &k belongs to.

Lemma 40. Suppose a < O is good, 6 < wy, (J, ;) € Eays, and (J, j) extends coherently to
a+ 1 to an elementary embedding

It Jars(Viyer) = Jars(Va)

for some a. Then if (K, k) € Eaya is a 8-limit root of (J,]), and (K, k) extends coherently
to a+ 1 to an elementary embedding

K : Jo1(Vx,11) = Jar1(Vag)

for some B then B < & and for all 7 < 3, K(3) > J(7).

Proof. First we prove the lemma for 6 = 1. This will, in essence, prove the lemma for all §
successor (assuming the limit case is true as well).

Suppose the lemma fails, and let [, n] be <-least such that there exists (K, k) € Eaya
a limit root of (J, ) with K 1)( ) < Ji ( ). Assume for ease of notation that n = 0

20



-,

and that (K, k) € Eaps is a 0-close limit root of (J,7). Then we have that a is definable
over Joio(Viy1) from (J, ) and K (@) as the least ordinal sent by J above K(&). Hence by
Lemma 13 for all n we have

(koo -0 ka)(@) = (jo o -+ -0 ju) (@)

So for all n we have R R
KD (an) < J D (a,)

where a, = (joo -+ 0 jn_1)(@).
Let B be least such that for some n < w, (K", k") € €442 a limit root of

(00 (i = )

which extends coherently to a + 1,

~

K ((J ) (@) = 8.

Then we have that 5 < J(a) and 3 > SUPzs J(B).
We claim that § € rng J, which is a contradiction. To see this, we claim that § is

definable from [J]. and J(a@) over Joy3(Vay1). And this follows since for any S € [J].NEqars
which extends coherently to o + 1, for all large enough n, if

&' = (30V) (@)

then (3 is the least ' such that for some (K, E) € €40 a limit root of S \which extends
coherently to o + 1, K(&') = . This follows since for all large enough n, Sl = glm=1)
for some m. Hence since [J]. € mgJ, we have 8 € rng J.

Note that we have actually also shown that 8 < & in the statement of the lemma, since
& < B implies that K(8) = o = J(a) < K(@). So K (&) = « since it cannot be any larger.
Hence a = .

Now we prove the lemma for § a limit, assuming the lemma is true for all &' < §.

Suppose the lemma fails for § and <K 8 < (5> is a limit root sequence with K the

common part witnessing this failure. Let ¢’ < ¢ be least such that for some (5, m),
(K7)a =D (B) > K5 (B).

Without loss of generality, by renaming, we can assume that ¢’ = 0. Let [B,m] ko be <go-
least such that for some (5y, mg) € [, m]xo,

(K%)= (Bo) > K= (Bo).

Then in fact by the previous lemma, there is an ng > mg such that for all m’ > ny and

(B/’ m/)’ (Bnm nO) € [ﬁa m]K‘);
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we have

(K = (B) = (K)o (Bo) > Ko™ (Bo) = Ky ™V () = Ko™ (Ba)-
The last inequality follows from the fact that (K, k) is a d-limit root of (K°, k%), which implies
that the embeddings making up K are iterated square roots of the embeddings making up
K°. Hence using the fact that

(Bo,mo), (B',m') € [B,m]xo

by Lemma 38 the inequality follows. B
~ Again by renaming, we can assume without loss of generality that ng = 0. Let (£,0) €
[, m]o. Then for all n we have

(Ko 0+ 0 kn)(Bo) = (kg o+ o ky)(Bo).

So for all n we have

A~

K D(Ba) < KD (B,)

where 3, = (k3o -0 k% )(Bo).
Let /3 be least such that for some n < w, (K™, k") € Eqys is a 0-limit root of

(D, (G i = )
which extends coherently to o + 1, K™(@) = 3. Then we have that 3 < J(a) and

B > sup J(B).

B<a

We claim that § € rng J , which is a contradiction. To see this, we claim that 3 is
definable from [J]. and J(&) over Jui3(Viy1). And this follows since for any S € [J]., for
all large enough n, if

A

&' = (30 V) (@)

n

then 8 is least such that for some (K, k) € Eqso a 0-limit root of Sy, K(&/) = 8. Hence

A

since [J]. € rng jlwe have 5 € rng J.
The fact that f < & follows as before. n

We now can achieve our main result on saturated sets.

Theorem 41. Let a < © be good and (J,j) € Eatw- Then for some v < w - w there is
(K, k) € &, which is a y-limit root of (J,J) such that there is a saturated set E and & such
that (K, k) € E and for all (K', k") € CL(E), K' extends to an elementary embedding

K Ja(Vig1) = Ja(Vag).

22



Proof. Let ¢ : w-w — w be an injection. We attempt to construct an w-w-limit root sequence
<(K”, | n < w- w> following ¢ at o + 2 such that for all n < w-w we have K™ extends to

K"t Jay(Vigs1) = Ja(Vas),

and for all i < w, q.; > @y.(i4+1)- Although the proof of Lemma 37 allows us to extend the
sequence following ¢, we cannot construct such a sequence satisfying this inequality. Hence
our attempt must fail at some point, at which point we have a,.; = dy.(i+1) by Lemma 40.
This fact allows us to define a saturated set as desired.

We construct the sequence as follows by induction for i < w. Let (K° k%) = (.J, 7). Having

constructed <(K”, ) n < w- i>, if there exists an extension <(K”, ) n <w-(i+ 1)> a
limit root sequence following ¢ [ w - (i + 1) at a + 2 such that

O_5w~(i+1) < lim Qs
n—w-(i+1)

then choose any such extension. Otherwise by the proof of Lemma 37 and using Lemma 40
there is some m < w and an extension

<(K",E”)|n§w-i+m>

such that for all further extensions following ¢ at o + 2, <(K", Y n<w-(i+ 1)> we have
O_5w~(i+1) = Qitm-

In this case, set E to be the set of (K’, K ) € &, such that for some limit root sequence

<(K”,E“)| n<w-(i+ 1)> following ¢ at a + 2, (K', k') = (K™, k™) for some n > w - i 4+ m.

By the proof of Lemma 37, E' is nonempty, and by the proof of 18, E is saturated. The main
point is that for any (K', k") € CL(FE), either (K', k') € E, or (K’ k') is the common part

of a sequence { (J*,7°)| s < w ) such that

<(Kn,15’”)| n<w-i +m> <(J8,j'8>| s < w>
is a limit root sequence following ¢ at o + 2. This follows since ¢ : w - w — w is an injection,
so if we let ¢ be such that &/, is a t(n)-square root of k%“T™ we must have t(n) — w as n — w
since (K’ k') ¢ E. Hence in either case, by the property of i we are assuming, we have
Qyyitm = QU
where a g is such that K’ extends to
K/ . JaK, (VS\K+1) — Ja(V)\+1).
Hence setting & = @.j+m witnesses the theorem for E. O

Theorem 42. Suppose j : L(Vay1) — L(Viy1) is elementary. Then for all « < © good,
strong inverse limit reflection at o holds.

Proof. The theorem follows immediately from Theorem 41 and the definition of strong inverse
limit reflection. O
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4 Definable saturated sets

One unfortunate aspect of the above results is that the saturated sets we defined were not
quite simply definable in way that certain saturated sets are definable for a being rather
small. For instance, when reflecting at w or A\, it is very easy to define saturated sets of
inverse limits which reflect these ordinals in the same way (namely because these ordinals are
simply definable). In addition, we have not quite replicated the more complicated structures
beyond saturated sets for arbitrary good « that exist at smaller ordinals. For instance the
structure of inverse limits extending to some « such that AT +w < a < AT -2 is a more
complicated structure of inverse limits, all reflecting A in the same way, but we do not quite
capture this structure at arbitrary good a with the above results.

In this section we try to replicate these structures at arbitrary good a by using the fact
that the existence of the structures themselves are simply definable. In this way, we see for
inverse limits, working at arbitrary good « is basically the same as working at small a.

Definition 43. Let k < © be good and let \,& < A . For 8 < x we define by induction a
set £F_(B) of inverse limits as follows.

E:(0) ={(J, 7) € E.| J extends to J : Lx(Viy1) = Le(Vag1) which is elementary}.
Then for any 8 such that 0 < § < Kk we set
E55(8) ={(/.]) € E5(0) N &gl Yy < BE (J,7) € Exyy then
Ya € Vit Wb € Varr I(K k) € 5 (7)
(K(a) = J(a) ANb €rmg K A K is a 0-close limit root of J))}.

Definition 44. Let x < © be good and let A\,& < \. We define gfk(ﬁ) for § < © by
induction as follows. 7

c‘ffﬁ(()) = {(J,)) € & J extends to J : Lg(Vi 1) = L.(Vas1) which is elementary}.
Then for 8 > 0 and 5 < © we define

£y .(B) € () Ex.(MIV¥y < B3In <wVa € Viy, Vb € Vi I(K k) € EF(7)
¥<p

(K(a) = J(a) Nb € rmgK, A K is an n-close limit root of J)}.
Let

& =) ELB)
B<O

Theorem 45. Suppose k is good and there exists an elementary embedding

j : L:‘i-‘rw(VA-‘rl) — Lm+w<v)\+1)~
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Then there exists k, A < X\ such that g/i\‘k # () is saturated and for all (J, ;) €&y, J extends
to J : La(Viy1) = Le(Vag1) which is elementary. Furthermore gfk is definable over L(Vy41)

from k, \ and K.

Proof. By Theorem 41 there is a A, & and a saturated set E such that for all K € CL(E),
K extends to an elementary embedding

K Je(Vigr) = Je(Vag).

But then clearly for all 3, £ C 5” -(B). Hence 5” # (). The rest of the properties of 5“ # )
follow easily from the deﬁnltlon and the fact that there is no cofinal function V), —> @ in
L(Vy41)®, which implies that for some 7 < ©, SAR = Efk( ). ]

Theorem 46. Suppose that there exists an elementary embedding
j : L@(V)\_H) — L@(V)\_H).

Let k be good. Then there exists k, A < X such that for all B < K, &y (B) # (). Furthermore
for all B <k, £ _(B) is definable over Liiz11(Vay1) from M\ R and k.

Proof. Let 0y be the least stable of L(V);1), that is the least ¢ such that
Ls(Vasr) < VA+1U{VA+1} Lo (Vai1).

We show that the theorem holds for all good k < ¢, which implies that the theorem holds
for all good Kk < ©, since if there were a contradiction there would be one below 9.
Now let k < dg. There is some &’ with x < kK’ < dy, and

Lo (Va1) A0 Lo (Vi)

Let a € V41 and ¢ be a ¥ formula such that x’ + 1 is the first place where ¢ has a witness
with parameter a. Also suppose that x is definable over L,/ 1(Viy1) from the parameter
b € Viy1. Then as in the proof of Theorem 3.8 of [3], if J € & yryw and a,b € tng J, then
for A = A\, J extends to an elementary embedding

J: Lis1(Vag) = L1 (Vag),

with & € rng.J. And furthermore, if @, b € V341 is such that J(a,b) = (a,b) and & = (J) k),
then for any K € &4, such that K(a,b) = (a,b), K extends to an elementary embedding

K LR’+1<V5\+1) - Ln’-i-l(VM-l)

6This fact follows as in the case of L(R). The argument involves constructing from such a cofinal function
7 a surjection of Vi1 x Vii1 x Vap1 — © by considering the least surjection o, : Vy41 — 7(a) definable
from b, where a,b € Vy41.
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and K (k) = k.

Hence we claim that J € &5 (). To see this it is enough to claim that for all K € &,
if <k, K€ &Euviwip and K(a,b) = (a,b), then K € 5/{,_6(5). But, for all 8 < k, k¥ +w+
is a good ordinal, and hence this follows immediately from what we remarked in the last
paragraph together with the proof of Lemma 7. O

Unfortunately, it is unclear at present how to show the local version of Theorem 46. That
is, reducing the hypothesis to, say, the existence of an elementary embedding

7t Lroyo(Vas1) = Liorw(Vagr)

and proving the result without using >;-reflection. Such a theorem would be more in line
with the results in this paper.
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