350 FIRST MIDTERM SPRING 2020

Question 1.

(i) Let $V=\left\{\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$, define

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2} b_{2}\right)
$$

and

$$
c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right)
$$

Determine whether V is a vector space over \mathbb{R} with these operations. Justify your answer.
(ii) Determine whether $W=\left\{(a, b, c) \in \mathbb{R}^{3} \mid a b+c^{2}=0\right\}$ is a subspace of \mathbb{R}^{3}. Justify your answer.

Question 2.

(i) Suppose that V, W are vector spaces over a field F and that $T: V \rightarrow W$ is a linear transformation. Give the definitions of $N(T)$ and $R(T)$.
(ii) State the Dimension Theorem.
(iii) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(a_{1}+a_{2}-3 a_{3}, a_{3}-2 a_{4}\right) .
$$

Find bases for $R(T)$ and $N(T)$.

Question 3.

Let $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard ordered basis of \mathbb{R}^{3} and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that

- $T\left(e_{1}\right)=2 e_{1} ;$
- $T\left(e_{2}\right)=-e_{1}-e_{2}-2 e_{3} ;$
- $T\left(e_{3}\right)=e_{1}+4 e_{2}+5 e_{3}$.

Compute $[T]_{\gamma}$, where γ is the ordered basis $\left\{e_{1}+2 e_{2}+e_{3}, e_{1}, e_{2}+e_{3}\right\}$ of \mathbb{R}^{3}.

Question 4.

(i) Let V, W be vector spaces over a field F and let $T: V \rightarrow W$ be a linear transformation. Let $\left\{w_{1}, \cdots, w_{k}\right\} \subseteq W$ be a set of k linearly independent vectors. Prove that if the vectors $\left\{v_{1}, \cdots, v_{k}\right\} \subseteq V$ satisfy $T\left(v_{i}\right)=w_{i}$ for $1 \leq i \leq k$, then $\left\{v_{1}, \cdots, v_{k}\right\}$ is linearly independent.
(ii) Let V, W be finite-dimensional vector spaces over a field F and let $T: V \rightarrow W$ be a linear transformation. Prove that if $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T is not onto.

