350 FIRST MIDTERM FALL 2019

Question 1.

(i) Let $V=\left\{\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$, define

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}-b_{2}\right)
$$

and

$$
c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right)
$$

Determine whether V is a vector space over \mathbb{R} with these operations. Justify your answer.
(ii) Determine whether $W=\left\{(a, b) \in \mathbb{R}^{2} \mid a^{2}-b^{2}=0\right\}$ is a subspace of \mathbb{R}^{2}. Justify your answer.

Question 2.

(i) Suppose that V, W are vector spaces over a field F and that $T: V \rightarrow W$ is a linear transformation. Give the definitions of $N(T)$ and $R(T)$.
(ii) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-2 a_{2}+a_{3}, 2 a_{1}-3 a_{2}+a_{3}\right)
$$

Find bases for $R(T)$ and $N(T)$.

Question 3.

Let $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard ordered basis of \mathbb{R}^{3} and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that

- $T\left(e_{1}\right)=2 e_{1}$;
- $T\left(e_{2}\right)=2 e_{1}+3 e_{2}$;
- $T\left(e_{3}\right)=-2 e_{1}-e_{2}+2 e_{3}$.

Compute $[T]_{\gamma}$, where γ is the ordered basis $\left\{-e_{1}, 2 e_{1}+e_{2}, e_{1}+e_{2}+e_{3}\right\}$ of \mathbb{R}^{3}.

Question 4.

(i) State the Dimension Theorem.
(ii) Suppose that V, W are finite dimensional vector spaces over a field F and that there exists a one-to-one linear transformation $T: V \rightarrow W$. Prove that $\operatorname{dim}(V) \leq \operatorname{dim}(W)$.

