350 SECOND MIDTERM SPRING 2020

Question 1.

Find the general solution of the following system of linear equations:

$$
\begin{aligned}
2 x_{1}-8 x_{2}+x_{3}-4 x_{4} & =9 \\
x_{1}-4 x_{2}-x_{3}+x_{4} & =3 \\
3 x_{1}-12 x_{2}-3 x_{4} & =12
\end{aligned}
$$

Question 2.

(i) Compute the inverse of the following matrix:

$$
A=\left(\begin{array}{lll}
2 & -3 & 4 \\
3 & -6 & 8 \\
1 & -1 & 1
\end{array}\right)
$$

(ii) Solve the following system of linear equations:

$$
\begin{array}{r}
2 x_{1}-3 x_{2}+4 x_{3}=5 \\
3 x_{1}-6 x_{2}+8 x_{3}=8 \\
x_{1}-x_{2}+x_{3}=2
\end{array}
$$

Question 3.

Let $A \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ be the matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & 1 \\
-1 & 0 & 1
\end{array}\right)
$$

Determine whether A is diagonalizable; and if so, find a diagonal matrix D and an invertible matrix Q such that $Q^{-1} A Q=D$.

Question 4. Throughout this question, let $A \in M_{n \times n}(F)$ be an $n \times n$ matrix over a field F.
(i) Give the definition of an eigenvector and an eigenvalue of A.
(ii) Suppose that λ is an eigenvalue of A. Give the definition of the corresponding eigenspace E_{λ}.

From now on, let $B \in M_{n \times n}(F)$ be an $n \times n$ matrix over F such that $A B=B A$. For each eigenvalue λ of A, let E_{λ} be the corresponding eigenspace.
(iii) Prove that if λ is an eigenvalue of A and $v \in E_{\lambda}$, then $B v \in E_{\lambda}$.
(iv) Prove that if A has n distinct eigenvalues, then B is diagonalizable. (Remark: This is not a typo. I really do want you to prove that B is diagonalizable.)

Of course, in class, we have seen that if A has n distinct eigenvalues, then A is diagonalizable. The following shows that (iv) is not true if we only assume that A is diagonalizable.
(v) Give examples of 2×2 matrices $D, B \in M_{2 \times 2}(\mathbb{R})$ such that D is diagonal and $D B=B D$, but B is not diagonalizable.

