350 PRACTICE FIRST MIDTERM QUESTIONS

Question 1.

(i) State the definition of a linearly dependent subset S of a vector space V.
(ii) State the definition of a basis of a vector space V.
(iii) Suppose that V, W are vector spaces over a field F and that $T: V \rightarrow W$ is a linear transformation. Give the definitions of $N(T)$ and $R(T)$.
(iv) State the Dimension Theorem.

Question 2.

Let $V=\left\{\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$, define

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)
$$

and

$$
c\left(a_{1}, a_{2}\right)=\left(c a_{1}, a_{2}\right) .
$$

Is V a vector space over \mathbb{R} with these operations?

Question 3.

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that:

- $T(1,0,0)=(2,3,4)$;
- $T(0,1,0)=(3,4,5)$;
- $T(0,0,1)=(4,5,6)$.

Find bases for $R(T)$ and $N(T)$.

Question 4.

Let $P_{3}(\mathbb{R})$ be the vector space of polynomials of degree at most 3 over the real numbers \mathbb{R} and let $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be the linear transformation defined by $T(f(x))=f^{\prime}(x)$.
(i) Compute the matrix $[T]_{\beta}$ with respect to the ordered basis $\beta=\left\{1, x, x^{2}, x^{3}\right\}$.
(ii) Compute $\operatorname{rank}(T)$ and nullity (T).

Question 5.

Suppose that V, W are vector spaces over a field F and that $T: V \rightarrow W$ is a one-to-one linear transformation. Show that if $\left\{v_{1}, \cdots, v_{n}\right\}$ is a linearly independent subset of V, then $\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}$ is a linearly independent subset of W.

