350 PRACTICE SECOND MIDTERM QUESTIONS

Question 1. Let $A \in \mathrm{M}_{n \times n}(F)$ be an $n \times n$ matrix over the field F.
(i) Give the definition of an eigenvector and eigenvalue of A.
(ii) Give the definition of the characteristic polynomial $f(t)$ of A.
(iii) Prove that if $Q \in \mathrm{M}_{n \times n}(F)$ is an invertible matrix, then $Q^{-1} A Q$ and A have the same characteristic polynomial.

Question 2.

Compute the inverse of the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 2 & 2 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Question 3.

Find the general solution of the following system of linear equations.

$$
\begin{aligned}
x_{1}+x_{2}-3 x_{3}+x_{4} & =-2 \\
x_{1}+x_{2}+x_{3}-x_{4} & =2 \\
x_{1}+x_{2}-x_{3} & =0
\end{aligned}
$$

Question 4.

Let $A \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ be the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{array}\right)
$$

(i) Find the eigenvalues of A.
(ii) Find the eigenspaces of A.
(iii) Find an invertible matrix $Q \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ such that $Q^{-1} A Q$ is a diagonal matrix.

Question 5.

Suppose that $A, B \in \mathrm{M}_{n \times n}(\mathbb{C})$ and that B is invertible. Prove that there exists $c \in \mathbb{C}$ such that $A+c B$ is not invertible. (Hint: consider $\operatorname{det}(A+c B)$.)

Question 6.

Let $A, B \in \mathrm{M}_{2 \times 2}(\mathbb{R})$ be the matrices:

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Prove that $A+r B$ is invertible for all $r \in \mathbb{R}$. (Hint: consider $\operatorname{det}(A+r B)$.)

