MATH 451 FINAL EXAM

Question 1. Let G be a group and for each $g \in G$, let $i_g : G \to G$ be the map defined by $i_g(x) = gxg^{-1}$.

- (a) Prove that $i_q \in \operatorname{Aut}(G)$ for each $g \in G$.
- (b) Prove that $\text{Inn}(G) = \{ i_g \mid g \in G \}$ is a subgroup of Aut(G).
- (c) Prove that if $\pi \in \text{Aut}(G)$ and $g \in G$, then $\pi i_g \pi^{-1} = i_{\pi(g)}$.
- (d) Prove that if G is a centerless group, then $C_{\text{Aut}(G)}(\text{Inn}(G)) = 1$.

Question 2. Recall that if G is a group and $x \in G$, then the corresponding conjugacy class is $x^G = \{gxg^{-1} \mid g \in G\}$.

(a) Suppose that G is a finite group and that $H \leq G$. Prove that H is a normal subgroup iff there exist elements $x_1, \dots, x_k \in G$ such that

$$H = \bigcup_{i=1}^k x_i^G.$$

- (b) Find a set π_1, \dots, π_ℓ of representatives for the distinct conjugacy classes of the alternating group A_5 and compute the size of the conjugacy class of π_i for each $1 \le i \le \ell$.
- (c) Using (a), (b) and Lagrange's Theorem, prove that A_5 is a simple group.

Question 3.

- (a) Give the definition of a Sylow p-subgroup of a finite group G.
- (b) State and prove the Third Sylow Theorem. (In your proof, you may assume the result that the Sylow p-subgroups of a finite group G are conjugate.)
- (c) Prove that there does *not* exist a simple group of order 270.
- Question 4. (a) Let p be a prime and let $C_p = \{1, a, \dots, a^{p-1}\}$ be a cyclic group of order p. Prove that $\operatorname{Aut}(C_p)$ is abelian of order p-1.
 - (b) Prove that if G is a group of order 15, then G is abelian.
 - (c) Prove that there exists a nonabelian group of order 30.
 - (d) Prove that if G is a group of order 30, then G contains a normal subgroup of order 15.

1

Question 5. Suppose that G is a group and that Ω is a G-set.

(a) Let E be the binary relation defined on Ω by

$$s E t$$
 iff $(\exists g \in G) \ t = g s$.

Prove that E is an equivalence relation.

- (b) Suppose that $N \subseteq G$. Let $\alpha \in \Omega$ and let $\Delta = \{ h \alpha \mid h \in N \}$ be the corresponding N-orbit. Prove that if $g \in G$, then $g \Delta = \{ g \beta \mid \beta \in \Delta \}$ is the N-orbit containing $g \alpha$.
- (c) Suppose that p is a prime and that $G \leq S_p$. Prove that if G acts transitively on $X = \{1, \dots, p\}$ and $1 \neq N \leq G$, then N also acts transitively on X. (Hint: Using (b) and the transitivity of G, show that all the orbits of N on X have the same cardinality.)

Question 6. Let $C = \{ z^n \mid n \in \mathbb{Z} \}$ be an infinite cyclic group and let $A = \{ 1, a \}$ be a cyclic group of order 2. Let $\varphi : A \to \operatorname{Aut}(C)$ be the homomorphism such that $\varphi_a(z^n) = z^{-n}$ for all $n \in \mathbb{Z}$ and let $D = C \rtimes A$ be the corresponding semi-direct product.

- (a) Prove that if $b = za \in D$, then $b^2 = 1$.
- (b) State von Dyck's Theorem.
- (c) Prove that $\langle x,y \mid x^2=1, y^2=1 \rangle$ is a presentation of D. (Hint: It may be helpful to notice that these relations imply that $yx=(xy)^{-1}$.)