MATH 451 FIRST MID-TERM

NAME: John Q. Public

Question	Marks
1	12
2	25
3	28
4	25
5	10

1

Question 1. Let H be a nonempty subset of the group G. Prove that H is a subgroup of G iff $a b^{-1} \in H$ for all $a, b \in H$.

First suppose that H is a subgroup of G. Then H is closed under multiplication and taking inverses. Hence if $a, b \in H$, then $b^{-1} \in H$ and so $ab^{-1} \in H$.

Next suppose that $\emptyset \neq H \subseteq G$ is such that $ab^{-1} \in H$ for all $a, b \in H$. Since $H \neq \emptyset$, there exists an element $a \in H$ and hence $1 = aa^{-1} \in H$. It follows that if $a \in H$, then $a^{-1} = 1$ $a^{-1} \in H$. Finally suppose that $a, b \in H$. Then $b^{-1} \in H$ and so $ab = a(b^{-1})^{-1} \in H$. Thus H is a subgroup of G.

- Question 2. (a) Prove that the alternating group A_5 does not have a subgroup which is isomorphic to the symmetric group S_4 .
 - (b) Prove that the alternating group A_5 does not have a subgroup of order 15.
- (a) Suppose that $H \leq A_5$ is a subgroup such that $H \cong S_4$. Then $|H| = |S_4| = 24$. Applying Lagrange's Theorem, we must have that 24 = |H| divides $|A_5| = 60$, which is a contradiction.
- (b) Suppose that $H \leq A_5$ is a subgroup such that |H|=15. Consider the transitive action of A_5 on the coset space $S=A_5/H$ and let

$$\varphi: A_5 \to \operatorname{Sym}(S)$$

be the associated homomorphism. Let $N = \ker \varphi$. Since A_5 acts transitively on S and |S| > 1, we have that $N \neq A_5$. Hence, since A_5 is simple, it follows that N = 1. But this means that φ is an injection of A_5 into $\operatorname{Sym}(S)$, which is impossible since $|A_5| = 60$ and $|\operatorname{Sym}(S)| = 24$.

Question 3. Suppose that G is a finite group and that S is a G-set. For each $s \in S$, let O_s denote the corresponding G-orbit.

- (a) Prove that if $s \in S$, then $[G: G_s] = |O_s|$.
- (b) Prove that if G is a finite p-group and p does not divide |S|, then there exists a fixed point for the action of G; i.e. an element $s \in S$ such that gs = s for all $g \in G$.

(*Hint*: Let $s_1, \dots s_t$ be representatives of the distinct G-orbits and consider the equation $|S| = |O_{s_1}| + \dots + |O_{s_t}|$.)

(a) It is easily checked that if $g, h \in G$, then

$$g s = h s$$
 iff $gG_s = hG_s$.

Hence we can define an injective map $\varphi:G/G_s\to O_s$ by $\varphi(gG_s)=g\,s$. To see that φ is also surjective, let $r\in O_s$ be arbitrary. Then there exists $g\in G$ such that $g\,s=r$ and hence $\varphi(gG_s)=g\,s=r$.

(b) Let $s_1, \dots s_t$ be representatives of the distinct G-orbits. Then

$$|S| = |O_{s_1}| + \dots + |O_{s_t}|.$$

Since p does not divide |S|, there exists i such that p does not divide $|O_{s_i}|$. Since

$$|O_{s_i}| = [G:G_{s_i}] = |G|/|G_{s_i}|$$

and G is a p-group, it follows that $|O_{s_i}| = 1$ and so s_i is a fixed point for the action of G.

Question 4. If G is a group and $H \leq G$ is a subgroup, then the *centralizer* of H in G is defined to be

$$C_G(H) = \{ g \in G \mid gh = hg \text{ for all } h \in H \}$$

and the normalizer of H in G is defined to be

$$N_G(H) = \{ g \in G \mid gHg^{-1} = H \}$$

- (a) Prove that $N_G(H)$ is a subgroup of G.
- (b) Prove that $C_G(H)$ is a normal subgroup of $N_G(H)$. (*Hint:* This can either be proved directly or else by considering a suitable homomorphism $\varphi: N_G(H) \to \operatorname{Aut}(H)$).
- (a) First note that $1H1^{-1} = H$ and so $1 \in N_G(H)$. Next if $g \in N_G(H)$, then $gHg^{-1} = H$ and so $H = g^{-1}Hg$. Thus $g^{-1} \in N_G(H)$. Finally if $g, h \in N_G(H)$, then

$$ghH(gh)^{-1}=ghHh^{-1}g^{-1}=g(hHh^{-1})g^{-1}=gHg^{-1}=H$$

and so $gh \in N_G(H)$. Thus $N_G(H)$ is a subgroup of G.

(b) First note that if $g \in C_G(H)$, then $gHg^{-1} = H$ and so $C_G(H) \subseteq N_G(H)$. It follows that

$$C_G(H) = \{ g \in N_G(H) \mid ghg^{-1} = h \text{ for all } h \in H \}.$$

Next note that if $g \in N_G(H)$, then $gHg^{-1} = H$ and so we can define an associated automorphism $c_g \in \text{Aut}(H)$ by $c_g(h) = ghg^{-1}$. Consider the map

$$\varphi: N_G(H) \to \operatorname{Aut}(H)$$

defined by $\varphi(g) = c_g$. Then it is easily checked that φ is a homomorphism; and that

$$\ker \varphi = \{ g \in N_G(H) \mid ghg^{-1} = h \text{ for all } h \in H \} = C_G(H).$$

Hence $C_G(H)$ is a normal subgroup of $N_G(H)$.

Question 5. Let G be a finite group. Prove that if $G \setminus \{1\}$ is a single conjugacy class, then |G| = 2.

Suppose that $G \smallsetminus \{1\}$ is a single conjugacy class. If $a \in G \smallsetminus \{1\}$, then

$$|G| - 1 = |G \setminus \{1\}| = |a^G| = [G : C_G(a)] = |G|/|C_G(a)|.$$

Thus |G|-1 divides |G| and this implies that |G|=2.