MATH 451 SECOND MID-TERM

NAME: John Q. Public

Question	Marks		
1	20		
2	20		
3	20		
4	20		
5	20		
	1		

Question 1. Throughout this question, let p be a prime.
(a) Suppose that G is a finite p-group and that X is a nonempty G-set such that $|X| \not \equiv 0 \bmod p$. Prove that there exists a point $x \in X$ such that $g x=x$ for all $g \in G$.
(b) Suppose that G is a p-group and that $H \unlhd G$. Prove that if $H \neq\{1\}$, then $H \cap Z(G) \neq\{1\}$.
(Hint: Consider the action of G on $H \backslash\{1\}$ by conjugation.)
(a) Let $|G|=p^{n}$. Let $X=\Omega_{1} \sqcup \cdots \sqcup \Omega_{t}$ be the decomposition of X into G-orbits. If $\alpha \in \Omega_{i}$, then $\left|\Omega_{i}\right|=\left[G: G_{\alpha}\right]=p^{m_{i}}$ for some $0 \leq m_{i} \leq n$. Since $|X|=\sum_{i=1}^{t}\left|\Omega_{i}\right|$ and p does not divide $|X|$, there exists $1 \leq i_{0} \leq t$ such that $m_{i_{0}}=0$. Hence, letting $\Omega_{i_{0}}=\{x\}$, it follows that $g x=x$ for all $g \in G$.
(b) Let $|G|=p^{n}$. If $g \in G$, then $g H g^{-1}=H$ and so $g(H \backslash\{1\}) g^{-1}=H \backslash\{1\}$. Thus G acts by conjugation on $H \backslash\{1\}$. Since $|H|=p^{m}$ for some $1 \leq m \leq n$, it follows that p does not divide $|H \backslash\{1\}|$. Hence there exists $h \in H \backslash\{1\}$ such that $g h g^{-1}=h$ for all $g \in G$. Clearly $h \in H \cap Z(G)$.

Question 2. (a) State the Third Sylow Theorem.
(b) Prove that there does not exist a simple group of order 5500 .
(c) Give an example of a nonabelian group of order 5500 .
(a) Suppose that G is a finite group of order $n=p^{e} m$, where p is a prime, $e \geq 1$ and p does not divide m. If s is the number s of Sylow p-subgroups of G, then s divides m and $s \equiv 1 \bmod p$.
(b) Suppose G is a simple group of order $5^{3} \times 11 \times 2^{2}$. If s is the number of Sylow 5 -subgroups of G, then s divides 44 and $s \equiv 1 \bmod 5$. Since G is simple, $s \neq 1$ and so $s=11$. By considering the transitive action of G by conjugation on the set of its Sylow 5 -subgroups, we see that there is an embedding of G into S_{11}. But this is impossible, since 5^{3} does not divide $\left|S_{11}\right|$.
(c) Since $\left|\operatorname{Aut}\left(C_{11}\right)\right|=10$, there exist embeddings

$$
C_{2} \hookrightarrow \operatorname{Aut}\left(C_{11}\right) \quad \text { and } \quad C_{5} \hookrightarrow \operatorname{Aut}\left(C_{11}\right),
$$

which give rise to corresponding nonabelian semidirect products. Thus the nonabelian groups of order 5500 include:

- $\left(C_{11} \rtimes C_{2}\right) \times C_{250}$
- $\left(C_{11} \rtimes C_{5}\right) \times C_{100}$
- etc.

Question 3. Suppose that G be a simple group of order 168. Let P be a Sylow 7-subgroup of G and let $H=N_{G}(P)$.
(a) Prove that $|H|=21$.
(b) Prove that $N_{G}(H)=H$. (Hint: Notice that $H \leqslant N_{G}(H) \leqslant G$.)
(c) Prove that there exists an element $g \in G$ such that $g H g^{-1} \neq H$ and $g H g^{-1} \cap H \neq\{1\}$.
(a) If s is the number of Sylow 7 -subgroups of G, then s divides 24 and $s \equiv 1$ $\bmod 7$. Since G is simple, $s \neq 1$ and so $s=8$. By considering the transitive action of G by conjugation on the set of its Sylow 7 -subgroups, we see that $\left[G: N_{G}(P)\right]=8$ and hence $|H|=\left|N_{G}(P)\right|=21$.
(b) Since $H \leqslant N_{G}(H) \leqslant G$, it follows that $d=\left[G: N_{G}(H)\right]$ divides $[G: H]=8$. Also by considering the transitive action of G on the coset space $G / N_{G}(H)$, we see that there is an embedding of G into S_{d}. Thus 7 divides $\left|S_{d}\right|$ and so $d=8$. It follows that $N_{G}(H)=H$.
(c) Suppose that $g H g^{-1} \cap H=1$ whenever $g H g^{-1} \neq H$. Then the 8 distinct conjugates of H intersect pairwise in 1. Hence

$$
\left|\left(\bigcup_{g \in G} H^{g}\right) \backslash\{1\}\right|=8 \times 20=160
$$

But this means that G has a unique Sylow 2-subgroup, which is a contradiction.

Question 4. Prove that $\left\langle x, y \mid x^{2}=1, y^{2}=1,(x y)^{3}=1\right\rangle$ is a presentation of S_{3}.
Let $X=\{x, y\}$ and let N be the normal closure of $\left\{x^{2}, y^{2},(x y)^{3}\right\}$ in $F(X)$. For each $w \in F(X)$, let $\bar{w}=w N \in F(X) / N$. By von Dyck's Theorem, there exists a surjective homomorphism $\varphi: F(X) / N \rightarrow S_{3}$ such that $\varphi(\bar{x})=(12)$ and $\varphi(\bar{y})=(23)$. In particular, $|F(X) / N| \geq 6$. On the other hand, let

$$
\bar{w}=\bar{x}^{n_{1}} \bar{y}^{m_{1}} \cdots \bar{x}^{n_{t}} \bar{y}^{m_{t}} \in F(X) / N,
$$

where each $n_{i}, m_{i} \in \mathbb{Z}$. Since $\bar{x}^{2}=1$ and $\bar{y}^{2}=1$, we can suppose that each $0 \leq n_{i}, m_{i} \leq 1$. Using the relations $\bar{x} \bar{y} \bar{x} \bar{y} \bar{x} \bar{y}=1$ and $\bar{x}=\bar{x}^{-1}$ and $\bar{y}=\bar{y}^{-1}$, we can now reduce \bar{w} to one of the following words:

$$
1, \bar{x}, \bar{y}, \bar{x} \bar{y}, \bar{y} \bar{x}, \bar{x} \bar{y} \bar{x} .
$$

Thus $|F(X) / N| \leq 6$ and it follows that $\varphi: F(X) / N \rightarrow S_{3}$ is an isomorphism.

Question 5. Recall that if $\pi \in \operatorname{Sym}(X)$, then $\operatorname{supp}(\pi)=\{x \in X \mid \pi(x) \neq x\}$. Let S_{∞} and A_{∞} be the subgroups of $\operatorname{Sym}\left(\mathbb{N}^{+}\right)$defined by

- $S_{\infty}=\left\{\pi \in \operatorname{Sym}\left(\mathbb{N}^{+}\right):|\operatorname{supp}(\pi)|<\infty\right\}$
- $A_{\infty}=\left\{\pi \in \operatorname{Sym}\left(\mathbb{N}^{+}\right):|\operatorname{supp}(\pi)|<\infty\right.$ and π is an even permutation $\}$.

Prove that A_{∞} is the unique nontrivial proper normal subgroup of S_{∞}.
For each $n \geq 1$, define

$$
G_{n}=\left\{\pi \in S_{\infty} \mid \operatorname{supp}(\pi) \subseteq\{1, \cdots, n\}\right\}
$$

and

$$
H_{n}=\left\{\pi \in A_{\infty} \mid \operatorname{supp}(\pi) \subseteq\{1, \cdots, n\}\right\} .
$$

Then we have that

- $G_{n} \cong S_{n}$ and $H_{n} \cong A_{n}$.
- $S_{\infty}=\bigcup_{n \geq 1} G_{n}$ and $A_{\infty}=\bigcup_{n \geq 1} H_{n}$.

Suppose that N is a nontrivial proper normal subgroup of S_{∞} and let $1 \neq \pi \in N$. Then there exists $n_{0} \geq 5$ such that $\pi \in G_{n_{0}}$. It follows that $N \cap G_{n}$ is a nontrivial normal subgroup of G_{n} for each $n \geq n_{0}$; and this implies that either $N \cap G_{n}=H_{n}$ or $N \cap G_{n}=G_{n}$. In particular, $H_{n} \leqslant N \cap G_{n}$ and so

$$
A_{\infty}=\bigcup_{n \geq n_{0}} H_{n} \leqslant N
$$

It is easily checked that $\left[S_{\infty}: A_{\infty}\right]=2$. Hence, since N is a proper subgroup of S_{∞}, it follows that $N=A_{\infty}$.

