MATH 451 SECOND MID-TERM NAME: John Q. Public | Question | Marks | |----------|-------| | 1 | 20 | | 2 | 20 | | 3 | 20 | | 4 | 20 | | 5 | 20 | **Question 1.** Throughout this question, let p be a prime. - (a) Suppose that G is a finite p-group and that X is a nonempty G-set such that $|X| \not\equiv 0 \mod p$. Prove that there exists a point $x \in X$ such that gx = x for all $g \in G$. - (b) Suppose that G is a p-group and that $H \subseteq G$. Prove that if $H \neq \{1\}$, then $H \cap Z(G) \neq \{1\}$. (*Hint*: Consider the action of G on $H \setminus \{1\}$ by conjugation.) - (a) Let $|G|=p^n$. Let $X=\Omega_1\sqcup\cdots\sqcup\Omega_t$ be the decomposition of X into G-orbits. If $\alpha\in\Omega_i$, then $|\Omega_i|=[G:G_\alpha]=p^{m_i}$ for some $0\leq m_i\leq n$. Since $|X|=\sum_{i=1}^t |\Omega_i|$ and p does not divide |X|, there exists $1\leq i_0\leq t$ such that $m_{i_0}=0$. Hence, letting $\Omega_{i_0}=\{x\}$, it follows that $g\,x=x$ for all $g\in G$. - (b) Let $|G|=p^n$. If $g\in G$, then $gHg^{-1}=H$ and so $g(H\smallsetminus\{1\})g^{-1}=H\smallsetminus\{1\}$. Thus G acts by conjugation on $H\smallsetminus\{1\}$. Since $|H|=p^m$ for some $1\leq m\leq n$, it follows that p does not divide $|H\smallsetminus\{1\}|$. Hence there exists $h\in H\smallsetminus\{1\}$ such that $ghg^{-1}=h$ for all $g\in G$. Clearly $h\in H\cap Z(G)$. Question 2. (a) State the Third Sylow Theorem. - (b) Prove that there does not exist a simple group of order 5500. - (c) Give an example of a nonabelian group of order 5500. - (a) Suppose that G is a finite group of order $n=p^em$, where p is a prime, $e\geq 1$ and p does not divide m. If s is the number s of Sylow p-subgroups of G, then s divides m and $s\equiv 1 \mod p$. - (b) Suppose G is a simple group of order $5^3 \times 11 \times 2^2$. If s is the number of Sylow 5-subgroups of G, then s divides 44 and $s \equiv 1 \mod 5$. Since G is simple, $s \neq 1$ and so s = 11. By considering the transitive action of G by conjugation on the set of its Sylow 5-subgroups, we see that there is an embedding of G into G₁₁. But this is impossible, since G³ does not divide G¹¹. - (c) Since $|\operatorname{Aut}(C_{11})| = 10$, there exist embeddings $$C_2 \hookrightarrow \operatorname{Aut}(C_{11})$$ and $C_5 \hookrightarrow \operatorname{Aut}(C_{11})$, which give rise to corresponding nonabelian semidirect products. Thus the non-abelian groups of order 5500 include: - $(C_{11} \rtimes C_2) \times C_{250}$ - $\bullet \ (C_{11} \rtimes C_5) \times C_{100}$ - etc. **Question 3.** Suppose that G be a simple group of order 168. Let P be a Sylow 7-subgroup of G and let $H = N_G(P)$. - (a) Prove that |H| = 21. - (b) Prove that $N_G(H) = H$. (Hint: Notice that $H \leq N_G(H) \leq G$.) - (c) Prove that there exists an element $g \in G$ such that $gHg^{-1} \neq H$ and $gHg^{-1} \cap H \neq \{1\}$. - (a) If s is the number of Sylow 7-subgroups of G, then s divides 24 and $s \equiv 1 \mod 7$. Since G is simple, $s \neq 1$ and so s = 8. By considering the transitive action of G by conjugation on the set of its Sylow 7-subgroups, we see that $[G:N_G(P)]=8$ and hence $|H|=|N_G(P)|=21$. - (b) Since $H \leq N_G(H) \leq G$, it follows that $d = [G : N_G(H)]$ divides [G : H] = 8. Also by considering the transitive action of G on the coset space $G/N_G(H)$, we see that there is an embedding of G into S_d . Thus 7 divides $|S_d|$ and so d = 8. It follows that $N_G(H) = H$. - (c) Suppose that $gHg^{-1} \cap H = 1$ whenever $gHg^{-1} \neq H$. Then the 8 distinct conjugates of H intersect pairwise in 1. Hence $$|(\bigcup_{g \in G} H^g) \setminus \{1\}| = 8 \times 20 = 160.$$ But this means that G has a unique Sylow 2-subgroup, which is a contradiction. **Question 4.** Prove that $\langle x, y \mid x^2 = 1, y^2 = 1, (xy)^3 = 1 \rangle$ is a presentation of S_3 . Let $X=\{x,y\}$ and let N be the normal closure of $\{x^2,y^2,(xy)^3\}$ in F(X). For each $w\in F(X)$, let $\bar{w}=wN\in F(X)/N$. By von Dyck's Theorem, there exists a surjective homomorphism $\varphi:F(X)/N\to S_3$ such that $\varphi(\bar{x})=(1\,2)$ and $\varphi(\bar{y})=(2\,3)$. In particular, $|F(X)/N|\geq 6$. On the other hand, let $$\bar{w} = \bar{x}^{n_1} \bar{y}^{m_1} \cdots \bar{x}^{n_t} \bar{y}^{m_t} \in F(X)/N,$$ where each n_i , $m_i \in \mathbb{Z}$. Since $\bar{x}^2 = 1$ and $\bar{y}^2 = 1$, we can suppose that each $0 \le n_i, m_i \le 1$. Using the relations $\bar{x}\bar{y}\bar{x}\bar{y}\bar{x}\bar{y} = 1$ and $\bar{x} = \bar{x}^{-1}$ and $\bar{y} = \bar{y}^{-1}$, we can now reduce \bar{w} to one of the following words: $$1, \bar{x}, \bar{y}, \bar{x}\bar{y}, \bar{y}\bar{x}, \bar{x}\bar{y}\bar{x}.$$ Thus $|F(X)/N| \le 6$ and it follows that $\varphi: F(X)/N \to S_3$ is an isomorphism. Question 5. Recall that if $\pi \in \text{Sym}(X)$, then $\text{supp}(\pi) = \{x \in X \mid \pi(x) \neq x\}$. Let S_{∞} and A_{∞} be the subgroups of $\text{Sym}(\mathbb{N}^+)$ defined by - $S_{\infty} = \{ \pi \in \operatorname{Sym}(\mathbb{N}^+) : |\operatorname{supp}(\pi)| < \infty \}$ - $A_{\infty} = \{ \pi \in \operatorname{Sym}(\mathbb{N}^+) : |\operatorname{supp}(\pi)| < \infty \text{ and } \pi \text{ is an even permutation } \}.$ Prove that A_{∞} is the *unique* nontrivial proper normal subgroup of S_{∞} . For each $n \geq 1$, define $$G_n = \{ \pi \in S_\infty \mid \operatorname{supp}(\pi) \subseteq \{1, \dots, n\} \}$$ and $$H_n = \{ \pi \in A_\infty \mid \operatorname{supp}(\pi) \subseteq \{1, \dots, n\} \}.$$ Then we have that - $G_n \cong S_n$ and $H_n \cong A_n$. - $S_{\infty} = \bigcup_{n>1} G_n$ and $A_{\infty} = \bigcup_{n>1} H_n$. Suppose that N is a nontrivial proper normal subgroup of S_{∞} and let $1 \neq \pi \in N$. Then there exists $n_0 \geq 5$ such that $\pi \in G_{n_0}$. It follows that $N \cap G_n$ is a nontrivial normal subgroup of G_n for each $n \geq n_0$; and this implies that either $N \cap G_n = H_n$ or $N \cap G_n = G_n$. In particular, $H_n \leq N \cap G_n$ and so $$A_{\infty} = \bigcup_{n \ge n_0} H_n \leqslant N.$$ It is easily checked that $[S_{\infty}: A_{\infty}] = 2$. Hence, since N is a *proper* subgroup of S_{∞} , it follows that $N = A_{\infty}$.