Question 1. Recall that the set $\mathrm{M}_{2 \times 2}(\mathbb{R})$ of 2×2 real matrices, equipped with matrix addition and scalar multiplication

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a+a^{\prime} & b+b^{\prime} \\
c+c^{\prime} & d+d^{\prime}
\end{array}\right) \quad \text { and } \quad r\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
r a & r b \\
r c & r d
\end{array}\right),
$$

is a vector space of dimension 4 .
(i) Determine whether the set $S=\left\{A \in \mathrm{M}_{2 \times 2}(\mathbb{R}) \mid A^{t}=A\right\}$ of symmetric 2×2 real matrices is a subspace of $\mathrm{M}_{2 \times 2}(\mathbb{R})$; and if so, compute its dimension.
(ii) Determine whether the set $S=\left\{A \in \mathrm{M}_{2 \times 2}(\mathbb{R}) \mid \operatorname{det}(A)=0\right\}$ of non-invertible 2×2 real matrices is a subspace of $\mathrm{M}_{2 \times 2}(\mathbb{R})$; and if so, compute its dimension.
(iii) State the Cayley-Hamilton Theorem.
(iv) Prove that if $n \geq 2$, then there does not exist an $n \times n$ real matrix $A \in \mathrm{M}_{n \times n}(\mathbb{R})$ such that $\left\{A^{\ell} \mid 1 \leq \ell \leq n^{2}\right\}$ is a basis of $\mathrm{M}_{n \times n}(\mathbb{R})$.

Question 2.

(i) Compute the inverse of the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 4 \\
1 & 1 & 0
\end{array}\right) \in \mathrm{M}_{3 \times 3}(\mathbb{R})
$$

(ii) Solve the following system of linear equations:

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}=2 \\
& 2 x_{1}+5 x_{2}+4 x_{3}=4 \\
& x_{1}+x_{2}=1 \\
& 1
\end{aligned}
$$

Question 3. Let $A \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ be the matrix

$$
A=\left(\begin{array}{lll}
1 & 3 & 3 \\
0 & 1 & 0 \\
0 & 3 & 4
\end{array}\right)
$$

(i) Find a diagonal matrix D and an invertible matrix Q such that $D=Q^{-1} A Q$.
(ii) Find a matrix $B \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ such that $B^{2}=A$. (Hint: it is easy to find a matrix $C \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ such that $C^{2}=D$.)

Question 4. Let $A \in \mathrm{M}_{3 \times 3}(\mathbb{C})$ be the matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
2 & 1 & -1 \\
-6 & -5 & -3
\end{array}\right)
$$

Then A has the characteristic polynomial

$$
f(t)=-(t-2)(t+2)^{2}
$$

Find a Jordan canonical form J of A and an invertible matrix Q such that $Q^{-1} A Q=J$.

Question 5. Recall that if $A, B \in \mathrm{M}_{n \times n}(F)$, then A and B are similar if there exists an invertible matrix $Q \in \mathrm{M}_{n \times n}(F)$ such that $Q^{-1} A Q=B$.
(i) Let $A, B \in \mathrm{M}_{3 \times 3}(\mathbb{C})$ be the matrices

$$
A=\left(\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right)
$$

Then A and B both have the characteristic polynomial

$$
f(t)=-(t-1)(t+2)^{2}
$$

Determine whether A and B are similar.
(ii) Suppose that $A_{1}, A_{2}, A_{3} \in \mathrm{M}_{3 \times 3}(\mathbb{C})$ and that all three matrices have the characteristic polynomial

$$
f(t)=-(t-1)(t+2)^{2}
$$

Prove that there exist $i \neq j$ such that A_{i} is similar to A_{j}.

Question 6. Let A be an $n \times n$ matrix over a field F.
(i) Give the definition of an eigenvector and eigenvalue of A.
(ii) Prove that if λ is an eigenvalue of A, then λ is a root of the characteristic polynomial $f(t)=\operatorname{det}(A-t I)$.

Let $a, b, c \in F$ be scalars and let

$$
B=\left(\begin{array}{lll}
a & b & c \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

(iii) Prove that if λ is an eigenvalue of B, then

$$
\mathbf{v}=\left(\begin{array}{c}
\lambda^{2} \\
\lambda \\
1
\end{array}\right)
$$

is an eigenvector corresponding to λ.

