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SOLUTIONS

Problem 1.

Define “greatest common divisor”.

ANSWER: If a, b are integers, a greatest common divisor of a and b is an integer
g such that

1. g divides a and g divides b,

2. if c is an integer that divides a and b, then c ≤ g.

ANOTHER CORRECT ANSWER: Let a, b, g be integers, We say that g is
a greatest common divisor of a and b if

g|a ∧ g|b ∧ (∀c ∈ Z)
(

(c|a ∧ c|b) =⇒ c ≤ g
)
.

Define “prime number”.

ANSWER: A prime number is a natural number p such that p > 1 and the only
natural numbers that divide p are 1 and p.

ANOTHER CORRECT ANSWER: Let p be an integer. We say that p is a
prime number if p>1 and the only natural numbers that divide p are 1 and p.

A THIRD CORRECT ANSWER: Let p be an integer. We say that p is a
prime nuumber if

p > 1 ∧ (∀k ∈ IN)
(
k|p =⇒ (k = 1 ∨ k = p)

)
.

A FOURTH CORRECT ANSWER: A prime number is an integer p such
that

p > 1 ∧ (∀j ∈ IN)(∀k ∈ IN)
(
p = jk =⇒ (j = 1 ∨ j = p)

)
.

A FIFTH CORRECT ANSWER: A prime number is an integer p such that

p > 1 ∧ (∀j ∈ IN)(∀k ∈ IN)
(
p = jk =⇒ (j = 1 ∨ k = 1)

)
.

Prove that if the greatest common divisor of two integers exists, then it is unique.
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ANSWER: Let a, b be integers. Suppose that g1 and g2 are greatest common
divisors of a and b. We want to prove that g1 = g2.

Since g1 is a GCD of a and b, every integer c such that c|a and c|b satisfies
c ≤ g1. In particular, since g2 is a GCD of a and b, g2 divides a and b, so g2 ≤ g1.

A similar argument shows that g1 ≤ g2. Hence g1 = g2. Q.E.D.

Prove that if a, b are integers that are not both zero, then the greatest common
divisor g of of a and b exists, and is equal to the smallest positive integer linear
combination of a and b. (This result is known as Bézout’s Lemma.)

ANSWER: Let a, b be integers. Assume that a and b are not both zero, that is,
that a 6= 0 ∨ b 6= 0.

Let S be the set of all natural numbers that are integer linear combinations of
a and b. That is,

S = {c ∈ IN : (∃u ∈ Z)(∃v ∈ Z)c = ua+ vb} .

Then S is a subset of IN, and S is nonempty because, for example, the number
|a|+ |b| (or the number a2 + b2) belongs to S.

Hence, by the well-ordering principle, S has a smallest member s.
We will prove that s is the greatest common divisor of a and b. For this

purpose, we have to prove that

s|a ∧ s|b , (1)

(∀k ∈ Z)
(

(k|a ∧ k|b) =⇒ k ≤ s
)
. (2)

To prove (1), we assume that s does not divide a. Then we can use the division
theorem, and write

a = sq + r , 0 ≤ r < s . (3)

It follows that r > 0, because r ≥ 0 and r cannot be 0, since we are assuming that
s does not divide a.

On the other hand, r = a− sq. Since s ∈ S, we may write

s = ua+ vb , u ∈ Z , v ∈ Z, .

Then r = a − sq = a − (ua + vb)q = (1 − uq)a + (−vq)b, so r is an integer linear
combination of a and b. Since r ∈ Z and r > 0, r belongs to S. Since s is the
smallest member of S, r ≥ s .

But r < s . So we have reached a contradiction. Hence s divides a .
A similar argument shows that s divides b, So (1) has been proved.
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To prove (2), we let k be an arbitrary integer, and assume that k|a ∧ k|b. We
want to prove that k ≤ s. This is clearly true if k ≤ 0, because s > 0. Now assume
that k > 0. Then we may write

a = mk , b = nk , m ∈ Z , n ∈ Z .

Hence s = ua+ vb = umk + vnk = (um+ vn)k.
Let p = um + vn. Then p ∈ Z and p must be positive, because s = pk and

both s, k are positive. So p ≥ 1. Then pk ≥ k, so s ≥ k. Hence we have proved
that k ≤ s, and this completes our proof that s is the greatest common divisor of
a and b. Q.E.D.

Problem 2. Prove, using Bézout’s Lemma, and without using the Fundamental
Theorem of Arithmetic, that if a, b, p are integers, p is prime, and p divides ab,
then p divides a or p divides b. (This result is known as Euclid’s Lemma.)

ANSWER: Let a, b, p be integers such that p is prime. Assume that p|ab. We
want to prove that p|a ∨ p|b.

We use the rule for proving a disjunction: to prove A∨B, we assume ∼ A and
prove B.

Assume that p does not divide a. Since p is prime, the only possible positive
integer common factor of p and a is 1. Hence we can write

1 = ua+ vp , u ∈ Z , v ∈ Z .

Since p|ab, we can write
ab = kp , k ∈ Z .

Then

b = b× 1

= b× (ua+ vp)

= uab+ bvp

= ukp+ bvp

= (uk + bv)p .

Since uk + bv ∈ Z, it follows that p|b.
Since we have proved that p|b assuming that ∼ p|a, it follows that p|a ∨ p|b .

Q.E.D.

ANOTHER CORRECT PROOF1: Let a, b, p be integers such that p is prime.
Assume that p|ab. We want to prove that p|a∨p|b. We will do it by contradiction.

1This proof was unknown to me until Sunday December 9, when I found it in one of
the papers I was grading. It’s really a nice proof.
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Assume that p does not divide a and does not divide b. (That is, assume the
negation of “p|a ∨ p|b”.)

Then p and a are coprime and p and b are coprime. So we may write

1 = ma+ np , 1 = ub+ vp m, n, u, v ∈ Z .

Then, multiplying the above equations, we get

1 = (ma+np)(ub+vp) = mnab+npub+mavp+nvp2 = mnab+(nub+mav+nvp)p .

So 1 is an integer linear combination of p and ab.
Therefore the greatest common divisor of p and b is 1. So p does not divide ab .

But p divides ab . So we got a contradiciton, proving that p|a ∨ p|b. Q.E.D.

Problem 3. Prove that if a, b are integers and c, n are natural numbers then the
number (a + b

√
c)n + (a − b

√
c)n is an integer. (HINT: First prove by induction

that there are integers un, vn such that (a+ b
√
c)n = un + vn

√
c and (a− b

√
c)n =

un − vn
√
c.)

ANSWER: We follow the hint.
Let P (n) be the predicate

(∃un ∈ Z)(∃vn ∈ Z)
(

(a+ b
√
c)n = un + vn

√
c ∧ (a− b

√
c)n = un − vn

√
c
)
.

We prove that (∀n ∈ IN)P (n) by induction.

Basis step. We have to prove P (1). But P (1) says that there exist integers u1, v1
such that a + b

√
c = u1 + v1

√
c and a − b

√
c = u1 − v1

√
c. And this existential

statement follows by choosing as witnesses u1 = a, v1 = b. So P (1) is true.

Inductive step. We have to prove that

(∀n ∈ IN)
(
P (n) =⇒ P (n+ 1)

)
. (4)

Let n ∈ IN be arbitrary. We want to prove that P (n) =⇒ P (n+ 1).
Assume P (n). Then we may write

(a+ b
√
c)n = un + vn

√
c ∧ (a− b

√
c)n = un − vn

√
c , un, vn ∈ Z . (5)

Then

(a+ b
√
c)n+1 = (a+ b

√
c)n(a+ b

√
c)

= (un + vn
√
c)(a+ b

√
c)

= una+ vnbc+ (unb+ vna)
√
c ,
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and

(a− b
√
c)n+1 = (a− b

√
c)n(a− b

√
c)

= (un − vn
√
c)(a− b

√
c)

= una+ vnbc− (unb+ vna)
√
c .

Therefore, if we pick

un+1 = una+ vnb , vn+1 = (unb+ vna) ,

we see that
(a+ b

√
c)n+1 = un+1 + vn+1

√
c

and
(a− b

√
c)n+1 = un+1 − vn+1

√
c .

So the integers un+1, vn+1 are witnesses for the existential statement P (n + 1).
Hence we have proved P (n+ 1).

Since we have proved P (n+1) assuming P (n), and we have done so for arbitrary
n ∈ IN, and in additon we have proved P (1), it follows that (∀n ∈ IN)P (n).

End of the proof of the result of Problem 3. We want to prove that

(∀n ∈ IN)
(

(a+ b
√
c)n + (a− b

√
c)n ∈ Z

)
.

(We are not going to do this part by induction. Induction would not work.)
Let n ∈ IN be arbitrary.
Using the result proved before, we may write

(a+ b
√
c)n = un + vn

√
c and (a− b

√
c)n = un − vn

√
c , un, vn ∈ Z .

Then
(a+ b

√
c)n + (a− b

√
c)n = 2un ,

so (a+ b
√
c)n + (a− b

√
c)n is an integer, and our proof is complete. Q.E.D.

Problem 4. Prove that if x is a positive real number and n is natural number
then

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2 .

ANSWER: We want to prove that

(∀x ∈ IR)
(
x > 0 =⇒ (∀n ∈ IN)(1 + x)n ≥ 1 + nx+

n(n− 1)

2
x2
)
. (6)
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Let x be an arbitrary real number. We want to prove

x > 0 =⇒ (∀n ∈ IN)(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2 . (7)

Assume x > 0. We want to prove

(∀n ∈ IN)(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2 . (8)

We prove (8) by induction.
Let P (n) be the predicate

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2 . (9)

We prove (∀n ∈ IN)P (n) by induction.

Basis step. We prove P (1). Statement P (1) says “1+x ≥ 1+x”, which is obviously

true. So we have proved P (1) .

Inductive step. We have to prove that

(∀n ∈ IN)
(
P (n) =⇒ P (n+ 1)

)
. (10)

Let n ∈ IN be arbitrary. We want to prove that P (n) =⇒ P (n+ 1).
Assume P (n). Then

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2 . (11)

Since 1 + x > 0 (because x > 0), we may multiply both sides of (11) by 1 + x, and
get

(1 + x)n(1 + x) ≥
(

1 + nx+
n(n− 1)

2
x2
)

(1 + x) . (12)

But(
1 + nx+

n(n− 1)

2
x2
)

(1 + x) = 1 + nx+
n(n− 1)

2
x2 + x+ nx2 +

n(n− 1)

2
x3

= 1 + (n+ 1)x+
(
n+

n(n− 1)

2

)
x2 +

n(n− 1)

2
x3

= 1 + (n+ 1)x+
(2n

2
+
n(n− 1)

2

)
x2 +

n(n− 1)

2
x3

= 1 + (n+ 1)x+
2n+ n(n− 1)

2
x2 +

n(n− 1)

2
x3

= 1 + (n+ 1)x+
n(n+ 1)

2
x2 +

n(n− 1)

2
x3

≥ 1 + (n+ 1)x+
n(n+ 1)

2
x2 + nx2 ,
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where we dropped the term n(n−1)
2 x3 because it is positive, since x > 0. So

(1 + x)n+1 = (1 + x)n(1 + x)

≥ 1 + (n+ 1)x+
n(n+ 1)

2
x2 + nx2 .

Hence P (n+ 1) holds.
This complets the induction. Q.E.D.

Problem 5. Prove by induction that

n < 2n for every n ∈ IN .

ANSWER: We want to prove that

(∀n ∈ IN)P (n) , (13)

where P (n) is the predicate “n < 2n”.
We will prove (13) by induction.

Basis step. We prove P (1). Statement P (1) says “1 < 2” which is obviously true.

So we have proved P (1) .

Inductive step. We have to prove that

(∀n ∈ IN)
(
P (n) =⇒ P (n+ 1)

)
. (14)

Let n ∈ IN be arbitrary. We want to prove that P (n) =⇒ P (n+ 1).
Assume P (n). Then

n < 2n . (15)

And then

n+ 1 < 2n + 1

< 2n + 2n

= 2.2n

= 2n+1 .

So
n+ 1 < 2n+1 . (16)

This means that P (n+ 1) holds, and our inductive proof is complete. Q.E.D.
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Problem 6. Define each of the following concepts:

1. union,.

2. intersection,

3. subset,

4. power set,

5. Cartesian product of sets.

ANSWER:

Definition of “union”: Let A, B be sets. Then the union of A and B is the set
A ∪B given by

A ∪B = {x : x ∈ A ∨ x ∈ B} .

Definition of “intersection”: Let A, B be sets. Then the intersection of A and B
is the set A ∩B given by

A ∩B = {x : x ∈ A ∧ x ∈ B} .

Definition of “subset”: Let A, B be sets. We say that A is a subset of B, and
write “A ⊆ B”, if every member of A is a member of B. That is,

A ⊆ B ⇐⇒ (∀x)(x ∈ A =⇒ x ∈ B) .

Definition of “power set”: Let A be a set. The power set of A is the set P(A) of
all the subsets of A. That is,

P(A) = {X : X ⊆ A} .

Definition of “Cartesian product”: Let A, B be sets. The Cartesian product of A
and B is the set A× B of all the ordered pairs (a, b) such that a ∈ A and b ∈ B.
That is,

A×B = {x : (∃a ∈ A)(∃b ∈ B)x = (a, b)} .

Equivalently,
A×B = {(a, b) : a ∈ A ∧ b ∈ B} .

Problem 7. For each of the following sentences:

i. Translate the sentence into English. Please write normal-sounding sen-
tences. Do not write horrible things like “for every member of the set of
integers” when you can say instead “for every integer”.

ii. Indicate if the sentence is true or false.
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iii. Give a reason (i.e., a brief proof) for your true-false answer to part ii.

1. (∀X)∅ ∈ X.

ANSWER: For every set X, the empty set belongs to X. This is false.
Proof: To disprove the universal sentence “(∀X) . . .”, we give a counterex-
ample. Let X = ∅. Then ∅ is not a member of X, because X has no
members.

2. (∀X)∅ ⊆ X.

ANSWER: For every set X, the empty set is a subset of X. This is true.
Proof: To prove the universal sentence “(∀X) . . .”, we use Rule ∀prove, and
start with “Let X be arbitrary”. Let X be an arbitrary set. We want to
prove “∅ ⊆ X”, i.e., (∀x)(x ∈ ∅ =⇒ x ∈ X). Let x be arbitrary. Then the
implication “x ∈ ∅ =⇒ x ∈ X” is true, because it’s an implication whose

premise is false, since ∅ has no members. So (∀x)
(
x ∈ ∅ =⇒ x ∈ X

)
. So

∅ ⊆ X.

3. (∀X)∅ ∈ P(X).

ANSWER: For every set X, the empty set belongs to the power set P(X).
This is true. Proof: To prove the universal sentence “(∀X) . . .”, we use
Rule ∀prove, and start with “Let X be arbitrary”. Let X be an arbitrary set.
We know that ∅ is a subset of X. And the power set of X is emptysetthe
set of all subets of X. Hence ∅ ∈ P(X).

4. (∀X)∅ ⊆ P(X).

ANSWER: For every set X, the empty set is a subset of the power set P(X).
This is true. Proof: The empty set is a subset of every set, so in particular
it is a subset of the set P(X).

5. (∀X){∅} ⊆ X

ANSWER: For every set X, the singleton of the empty set is a subset of
X. This is false. Proof: To disprove the universal sentence “(∀X) . . .”, we
give a counterexample. Let X be the empty set. Then X has no members,
so ∅ /∈ X. Now the set {∅} is a subset of X if and only if every member of
{∅} belongs to X, that is, if and only if ∅ ∈ X. But ∅ /∈ X, so {∅} is not a
subset of X.

6. (∀X){∅} ∈ P(X).
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ANSWER: For every set X, the singleton of the empty set belongs to the
power set P(X). This is false. Proof: To disprove the universal sentence
“(∀X) . . .”, we give a counterexample. Let X be the empty set. Then X
has no members, so ∅ /∈ X. Now the set {∅} is a subset of X if and only if
every member of {∅} belongs to X, that is, if and only if ∅ ∈ X. But ∅ /∈ X,
so {∅} is not a subset of X. Therefore {∅} is not a member of P(X).

7. (∀X){∅} ⊆ P(X).

ANSWER: For every set X, the singleton of the empty set is a subset of
the power set P(X). This is true. Proof: To prove the universal sentence
“(∀X) . . .”, we use Rule ∀prove, and start with “Let X be arbitrary”. Let X
be an arbitrary set. We want to prove {∅} ⊆ P(X). To prove this, we have
to prove that every member of {∅} is in P(X). And this is true because the
only member of {∅} is ∅, and we know that ∅ ∈ P(X).

8. (∀m ∈ IN)(∀k ∈ IN){n ∈ IN : m|n} ⊆ {n ∈ IN : km|n}.

ANSWER: For all natural numbers m, k, the set of all natural numbers that
are divisible by m is a subset of the set of all natural numbers that are
divisible by km. This is false. Proof: To disprove the universal sentence
“(∀m ∈ IN)(∀k ∈ IN) . . .”, we give a counterexample. Take m = 2, k = 2.
Then {n ∈ IN : m|n} is the set of all even natural numbers, and the set
{n ∈ IN : km|n} is the set of all natural numbers that are divisible by 4.
Clearly, the first set is ot subset of the second set.

9. (∀m ∈ IN)(∀k ∈ IN){n ∈ IN : km|n} ⊆ {n ∈ IN : m|n}.

ANSWER: For all natural numbers m, k, the set of all natural numbers
that are divisible by km is a subset of the set of all natural numbers that
are divisible by m. This is true. Proof: To prove the universal sentence
“(∀m ∈ IN)(∀k ∈ IN) . . .”, we use Rule ∀prove, and start with “Let m, k be
arbitrary”. Let m, k be arbitrary natural numbers. Define sets A, B by
letting A = {n ∈ IN : km|n}, B = {n ∈ IN : m|n}. If n ∈ A, then we can
write n = mkj, j ∈ Z. Then m|n, so n ∈ B. Hence A ⊆ B.

10. (∀x ∈ IR)
(
x > 0 =⇒ (∃u ∈ IR)(∀v ∈ IR)(v > u =⇒ v2 < x)

)
ANSWER: For every positive real number x there exists a real number u
such that every real number v for which v > u satisfies v2 < x. This
is false. Proof: Suppose the statement was true. Then the statement
“(∃u ∈ IR)(∀v ∈ IR)(v > u =⇒ v2 < x)”, obtained by specializing to x = 1,
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would be true2. Then we can pick a witness u∗, so u∗ is a real number such
that (∀v ∈ IR)(v > u∗ =⇒ v2 < 1). Let v∗ = 1 + max(u∗, 1). Then v∗ > u∗,
so v2∗ < 1. But v∗ > 1, so v2∗ > 1. So we have arrived at a contradiction.

11. (∀x ∈ IR)
(
x > 0 =⇒ (∃u ∈ IR)(∀v ∈ IR)(v > u =⇒ 1

v2
< x)

)
ANSWER: For every positive real number x there exists a real number u
such that every real number v for which v > u satisfies v2 < x. This is true.
Proof: Let x ∈ IR be arbitrary. Suppose x > 0. Pick u∗ = 1√

x
. We show

that u∗ is a witness for the statement “(∃u ∈ IR)(∀v ∈ IR)(v > u =⇒ 1
v2
<

x)”. To show this, we have to prove that (∀v ∈ IR)(v > u∗ =⇒ 1
v2
< x). Let

v be an arbitrary real number. Assume v > u∗. Then v2 > u2∗, so 1
v2∗
< 1

u2∗
.

But 1
u2∗

= x, so 1
v2∗
< x, as desired.

Problem 8. Prove the existence part of the Fundamental Theorem of Arithmetic
(FTA): if n ∈ IN and n ≥ 2 then n is a product of primes, that is, there exist k ∈ IN
and a list (p1, p2, . . . , pk) of prime numbers such that

n =
k∏
j=1

pj .

ANSWER:

Let B be the set of all natural numbers n such that n ≥ 2 and n is not a product
of primes.

We want to prove that the set B is empty. For this purpose, we assume that
B is not empty and try to get a contradiction.

So assume that B 6= ∅. By the well-ordering principle, B has a smallest member
b. Then b ∈ B, so

a. b is a natural number,

b. b ≥ 2,

c. b is not a product of primes .

2Notice that what we are doing here is exactly “disproving the universal statement
(∀x ∈ IR)P (x) . . . by giving a counterexample”. We are taking x to be 1, and showing
that for that x the sentence P (x) is not true. and we are proving that by contradiction:
if P (x)—that is, “x > 0 =⇒ (∃u ∈ IR)(∀v ∈ IR)(v > u =⇒ v2 < x)”— was true, then
(∃u ∈ IR)(∀v ∈ IR)(v > u =⇒ v2 < x) would be true—because x is positive—so we could
pick a witness u∗, etc.
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And, in addition,

d. b is the smallest member of B, that is,

(∀m)(m ∈ B =⇒ m ≥ b) .

Since b is not a product of primes, it follows in particular that b is not prime.
(Reason: if b was prime, then b would be a product of primes according to our
definition.)

Since b is not prime, there are two possibilities: either b = 1 or b has a factor k
which is a natural number such that k 6= 1 and k 6= b.

But the fist possibility (b = 1) cannot arise, because b ≥ 2.

Hence the second possibility occurs. That is, we can pick a natural number k such
that k divides b, k 6= 1, and k 6= b.

Since k|b, we can write
b = jk , j ∈ Z .

And then j has to be a natural number. (Reason: we know that k ∈ IN, so k > 0.
If j was ≤ 0, it would follow that kj ≤ 0. But kj = b and b > 0.)

Then j 6= 1 and j 6= b. (Reason: j cannot be 1 because if j = 1 then it would
follow from b = jk that k = b, and we know that k 6= b. And j cannot be b because
if j = b then it would folows from b = jk that k = 1, and we know that k 6= 1.)

Then j < b and k < b. (Reason: k ≥ 1, because k ∈ IN; so k > 1, because k 6= 1;
so k ≥ 2; and then if j was ≥ b it would follow that jk ≥ 2j > j > b, but jk = b.
The proof that k < b is exactly the same.)

Hence j /∈ B (because b is the smallest member of B, and j < b). And j ≥ 2
(because j > 1). This means that j is a product of primes (because if j wasn’t a
product of primes it would be in B).

Similarly, k is a product of primes. So we can write j =
∏m
i=1 pi and k =

∏µ
`=1 q`,

where m ∈ IN, µ ∈ IN, and the pi and the q` are primes. But then

b =
( m∏
i=1

pi

)
×
( µ∏
`=1

q`

)
,

so b is a product of primes .

But we know that b is not a product of primes . So we got two contradictory
statements.

This contradiction was derived by assuming that B 6= ∅. So B = ∅, and this
proves that every natural number n such that n ≥ 2 is a product of primes, which
is our desired conclusion. Q.E.D.


