MATHEMATICS 300 - FALL 2018 Introduction to Mathematical Reasoning
 H. J. Sussmann
 MIDTERM EXAM
 December 4, 2018 SOLUTIONS

Problem 1.

Define "greatest common divisor".
$\boldsymbol{A} \boldsymbol{N S} \boldsymbol{W} \boldsymbol{E R}$: If a, b are integers, a greatest common divisor of a and b is an integer g such that

1. g divides a and g divides b,
2. if c is an integer that divides a and b, then $c \leq g$.

ANOTHER CORRECT ANSWER: Let a, b, g be integers, We say that g is a greatest common divisor of a and b if

$$
g|a \wedge g| b \wedge(\forall c \in \mathbb{Z})((c|a \wedge c| b) \Longrightarrow c \leq g)
$$

Define "prime number".
$\boldsymbol{A} N S W E R$: A prime number is a natural number p such that $p>1$ and the only natural numbers that divide p are 1 and p.
ANOTHER CORRECT ANSWER: Let p be an integer. We say that p is a prime number if $p>1$ and the only natural numbers that divide p are 1 and p.
A THIRD CORRECT ANSWER: Let p be an integer. We say that p is a prime nuumber if

$$
p>1 \wedge(\forall k \in \mathbb{N})(k \mid p \Longrightarrow(k=1 \vee k=p))
$$

A FOURTH CORRECT ANSWER: A prime number is an integer p such that

$$
p>1 \wedge(\forall j \in \mathbb{N})(\forall k \in \mathbb{N})(p=j k \Longrightarrow(j=1 \vee j=p))
$$

A FIFTH CORRECT ANSWER: A prime number is an integer p such that

$$
p>1 \wedge(\forall j \in \mathbb{N})(\forall k \in \mathbb{N})(p=j k \Longrightarrow(j=1 \vee k=1))
$$

Prove that if the greatest common divisor of two integers exists, then it is unique.
$\boldsymbol{A} \boldsymbol{N S W E R}$: Let a, b be integers. Suppose that g_{1} and g_{2} are greatest common divisors of a and b. We want to prove that $g_{1}=g_{2}$.

Since g_{1} is a GCD of a and b, every integer c such that $c \mid a$ and $c \mid b$ satisfies $c \leq g_{1}$. In particular, since g_{2} is a GCD of a and b, g_{2} divides a and b, so $g_{2} \leq g_{1}$.

A similar argument shows that $g_{1} \leq g_{2}$. Hence $g_{1}=g_{2}$. \quad Q.E.D.
Prove that if a, b are integers that are not both zero, then the greatest common divisor g of of a and b exists, and is equal to the smallest positive integer linear combination of a and b. (This result is known as Bézout's Lemma.)
$\boldsymbol{A} N \boldsymbol{N W} \boldsymbol{W}$: Let a, b be integers. Assume that a and b are not both zero, that is, that $a \neq 0 \vee b \neq 0$.

Let S be the set of all natural numbers that are integer linear combinations of a and b. That is,

$$
S=\{c \in \mathbb{N}:(\exists u \in \mathbb{Z})(\exists v \in \mathbb{Z}) c=u a+v b\}
$$

Then S is a subset of \mathbb{N}, and S is nonempty because, for example, the number $|a|+|b|$ (or the number $a^{2}+b^{2}$) belongs to S.

Hence, by the well-ordering principle, S has a smallest member s.
We will prove that s is the greatest common divisor of a and b. For this purpose, we have to prove that

$$
\begin{align*}
& s|a \wedge s| b, \tag{1}\\
& (\forall k \in \mathbb{Z})((k|a \wedge k| b) \Longrightarrow k \leq s) . \tag{2}
\end{align*}
$$

To prove (1), we assume that s does not divide a. Then we can use the division theorem, and write

$$
\begin{equation*}
a=s q+r, \quad 0 \leq r<s . \tag{3}
\end{equation*}
$$

It follows that $r>0$, because $r \geq 0$ and r cannot be 0 , since we are assuming that s does not divide a.

On the other hand, $r=a-s q$. Since $s \in S$, we may write

$$
s=u a+v b, \quad u \in \mathbb{Z}, \quad v \in \mathbb{Z},
$$

Then $r=a-s q=a-(u a+v b) q=(1-u q) a+(-v q) b$, so r is an integer linear combination of a and b. Since $r \in \mathbb{Z}$ and $r>0, r$ belongs to S. Since s is the smallest member of $S, r \geq s$.

But $r<s$. So we have reached a contradiction. Hence s divides a.
A similar argument shows that s divides b, So (1) has been proved.

To prove (2), we let k be an arbitrary integer, and assume that $k|a \wedge k| b$. We want to prove that $k \leq s$. This is clearly true if $k \leq 0$, because $s>0$. Now assume that $k>0$. Then we may write

$$
a=m k, \quad b=n k, \quad m \in \mathbb{Z}, n \in \mathbb{Z} .
$$

Hence $s=u a+v b=u m k+v n k=(u m+v n) k$.
Let $p=u m+v n$. Then $p \in \mathbb{Z}$ and p must be positive, because $s=p k$ and both s, k are positive. So $p \geq 1$. Then $p k \geq k$, so $s \geq k$. Hence we have proved that $k \leq s$, and this completes our proof that s is the greatest common divisor of a and b.
Q.E.D.

Problem 2. Prove, using Bézout's Lemma, and without using the Fundamental Theorem of Arithmetic, that if a, b, p are integers, p is prime, and p divides $a b$, then p divides a or p divides b. (This result is known as Euclid's Lemma.)
$\boldsymbol{A} \boldsymbol{N S W E R}$: Let a, b, p be integers such that p is prime. Assume that $p \mid a b$. We want to prove that $p|a \vee p| b$.

We use the rule for proving a disjunction: to prove $A \vee B$, we assume $\sim A$ and prove B.

Assume that p does not divide a. Since p is prime, the only possible positive integer common factor of p and a is 1 . Hence we can write

$$
1=u a+v p, u \in \mathbb{Z}, v \in \mathbb{Z}
$$

Since $p \mid a b$, we can write

$$
a b=k p, \quad k \in \mathbb{Z}
$$

Then

$$
\begin{aligned}
b & =b \times 1 \\
& =b \times(u a+v p) \\
& =u a b+b v p \\
& =u k p+b v p \\
& =(u k+b v) p .
\end{aligned}
$$

Since $u k+b v \in \mathbb{Z}$, it follows that $p \mid b$.
Since we have proved that $p \mid b$ assuming that $\sim p \mid a$, it follows that $p|a \vee p| b$. Q.E.D.

ANOTHER CORRECT PROOF ${ }^{1}$: Let a, b, p be integers such that p is prime. Assume that $p \mid a b$. We want to prove that $p|a \vee p| b$. We will do it by contradiction.

[^0]Assume that p does not divide a and does not divide b. (That is, assume the negation of " $p|a \vee p| b$ ".)

Then p and a are coprime and p and b are coprime. So we may write

$$
1=m a+n p, \quad 1=u b+v p \quad m, n, u, v \in \mathbb{Z} .
$$

Then, multiplying the above equations, we get
$1=(m a+n p)(u b+v p)=m n a b+n p u b+m a v p+n v p^{2}=m n a b+(n u b+m a v+n v p) p$.
So 1 is an integer linear combination of p and $a b$.
Therefore the greatest common divisor of p and b is 1 . So p does not divide $a b$.
But p divides $a b$. So we got a contradiciton, proving that $p|a \vee p| b$. Q.E.D.
Problem 3. Prove that if a, b are integers and c, n are natural numbers then the number $(a+b \sqrt{c})^{n}+(a-b \sqrt{c})^{n}$ is an integer. (HINT: First prove by induction that there are integers u_{n}, v_{n} such that $(a+b \sqrt{c})^{n}=u_{n}+v_{n} \sqrt{c}$ and $(a-b \sqrt{c})^{n}=$ $u_{n}-v_{n} \sqrt{c}$.)
$\boldsymbol{A} \boldsymbol{N S W E R}$: We follow the hint.
Let $P(n)$ be the predicate

$$
\left(\exists u_{n} \in \mathbb{Z}\right)\left(\exists v_{n} \in \mathbb{Z}\right)\left((a+b \sqrt{c})^{n}=u_{n}+v_{n} \sqrt{c} \wedge(a-b \sqrt{c})^{n}=u_{n}-v_{n} \sqrt{c}\right)
$$

We prove that $(\forall n \in \mathbb{N}) P(n)$ by induction.
Basis step. We have to prove $P(1)$. But $P(1)$ says that there exist integers u_{1}, v_{1} such that $a+b \sqrt{c}=u_{1}+v_{1} \sqrt{c}$ and $a-b \sqrt{c}=u_{1}-v_{1} \sqrt{c}$. And this existential statement follows by choosing as witnesses $u_{1}=a, v_{1}=b$. So $P(1)$ is true.
Inductive step. We have to prove that

$$
\begin{equation*}
(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1)) \tag{4}
\end{equation*}
$$

Let $n \in \mathbb{N}$ be arbitrary. We want to prove that $P(n) \Longrightarrow P(n+1)$.
Assume $P(n)$. Then we may write

$$
\begin{equation*}
(a+b \sqrt{c})^{n}=u_{n}+v_{n} \sqrt{c} \wedge(a-b \sqrt{c})^{n}=u_{n}-v_{n} \sqrt{c}, u_{n}, v_{n} \in \mathbb{Z} . \tag{5}
\end{equation*}
$$

Then

$$
\begin{aligned}
(a+b \sqrt{c})^{n+1} & =(a+b \sqrt{c})^{n}(a+b \sqrt{c}) \\
& =\left(u_{n}+v_{n} \sqrt{c}\right)(a+b \sqrt{c}) \\
& =u_{n} a+v_{n} b c+\left(u_{n} b+v_{n} a\right) \sqrt{c}
\end{aligned}
$$

and

$$
\begin{aligned}
(a-b \sqrt{c})^{n+1} & =(a-b \sqrt{c})^{n}(a-b \sqrt{c}) \\
& =\left(u_{n}-v_{n} \sqrt{c}\right)(a-b \sqrt{c}) \\
& =u_{n} a+v_{n} b c-\left(u_{n} b+v_{n} a\right) \sqrt{c} .
\end{aligned}
$$

Therefore, if we pick

$$
u_{n+1}=u_{n} a+v_{n} b, \quad v_{n+1}=\left(u_{n} b+v_{n} a\right),
$$

we see that

$$
(a+b \sqrt{c})^{n+1}=u_{n+1}+v_{n+1} \sqrt{c}
$$

and

$$
(a-b \sqrt{c})^{n+1}=u_{n+1}-v_{n+1} \sqrt{c} .
$$

So the integers u_{n+1}, v_{n+1} are witnesses for the existential statement $P(n+1)$. Hence we have proved $P(n+1)$.

Since we have proved $P(n+1)$ assuming $P(n)$, and we have done so for arbitrary $n \in \mathbb{N}$, and in additon we have proved $P(1)$, it follows that $(\forall n \in \mathbb{N}) P(n)$.

End of the proof of the result of Problem 3. We want to prove that

$$
(\forall n \in \mathbb{N})\left((a+b \sqrt{c})^{n}+(a-b \sqrt{c})^{n} \in \mathbb{Z}\right)
$$

(We are not going to do this part by induction. Induction would not work.)
Let $n \in \mathbb{N}$ be arbitrary.
Using the result proved before, we may write

$$
(a+b \sqrt{c})^{n}=u_{n}+v_{n} \sqrt{c} \text { and }(a-b \sqrt{c})^{n}=u_{n}-v_{n} \sqrt{c}, u_{n}, v_{n} \in \mathbb{Z} .
$$

Then

$$
(a+b \sqrt{c})^{n}+(a-b \sqrt{c})^{n}=2 u_{n},
$$

so $(a+b \sqrt{c})^{n}+(a-b \sqrt{c})^{n}$ is an integer, and our proof is complete.
Q.E.D.

Problem 4. Prove that if x is a positive real number and n is natural number then

$$
(1+x)^{n} \geq 1+n x+\frac{n(n-1)}{2} x^{2}
$$

$\boldsymbol{A} \boldsymbol{N S W E R}$: We want to prove that

$$
\begin{equation*}
(\forall x \in \mathbb{R})\left(x>0 \Longrightarrow(\forall n \in \mathbb{N})(1+x)^{n} \geq 1+n x+\frac{n(n-1)}{2} x^{2}\right) \tag{6}
\end{equation*}
$$

Let x be an arbitrary real number. We want to prove

$$
\begin{equation*}
x>0 \Longrightarrow(\forall n \in \mathbb{N})(1+x)^{n} \geq 1+n x+\frac{n(n-1)}{2} x^{2} \tag{7}
\end{equation*}
$$

Assume $x>0$. We want to prove

$$
\begin{equation*}
(\forall n \in \mathbb{N})(1+x)^{n} \geq 1+n x+\frac{n(n-1)}{2} x^{2} \tag{8}
\end{equation*}
$$

We prove (8) by induction.
Let $P(n)$ be the predicate

$$
\begin{equation*}
(1+x)^{n} \geq 1+n x+\frac{n(n-1)}{2} x^{2} \tag{9}
\end{equation*}
$$

We prove $(\forall n \in \mathbb{N}) P(n)$ by induction.
Basis step. We prove $P(1)$. Statement $P(1)$ says " $1+x \geq 1+x$ ", which is obviously true. So we have proved $P(1)$.
Inductive step. We have to prove that

$$
\begin{equation*}
(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1)) \tag{10}
\end{equation*}
$$

Let $n \in \mathbb{N}$ be arbitrary. We want to prove that $P(n) \Longrightarrow P(n+1)$.
Assume $P(n)$. Then

$$
\begin{equation*}
(1+x)^{n} \geq 1+n x+\frac{n(n-1)}{2} x^{2} \tag{11}
\end{equation*}
$$

Since $1+x>0$ (because $x>0$), we may multiply both sides of (11) by $1+x$, and get

$$
\begin{equation*}
(1+x)^{n}(1+x) \geq\left(1+n x+\frac{n(n-1)}{2} x^{2}\right)(1+x) \tag{12}
\end{equation*}
$$

But

$$
\begin{aligned}
\left(1+n x+\frac{n(n-1)}{2} x^{2}\right)(1+x) & =1+n x+\frac{n(n-1)}{2} x^{2}+x+n x^{2}+\frac{n(n-1)}{2} x^{3} \\
& =1+(n+1) x+\left(n+\frac{n(n-1)}{2}\right) x^{2}+\frac{n(n-1)}{2} x^{3} \\
& =1+(n+1) x+\left(\frac{2 n}{2}+\frac{n(n-1)}{2}\right) x^{2}+\frac{n(n-1)}{2} x^{3} \\
& =1+(n+1) x+\frac{2 n+n(n-1)}{2} x^{2}+\frac{n(n-1)}{2} x^{3} \\
& =1+(n+1) x+\frac{n(n+1)}{2} x^{2}+\frac{n(n-1)}{2} x^{3} \\
& \geq 1+(n+1) x+\frac{n(n+1)}{2} x^{2}+n x^{2},
\end{aligned}
$$

where we dropped the term $\frac{n(n-1)}{2} x^{3}$ because it is positive, since $x>0$. So

$$
\begin{aligned}
(1+x)^{n+1} & =(1+x)^{n}(1+x) \\
& \geq 1+(n+1) x+\frac{n(n+1)}{2} x^{2}+n x^{2}
\end{aligned}
$$

Hence $P(n+1)$ holds.
This complets the induction.
Q.E.D.

Problem 5. Prove by induction that

$$
n<2^{n} \quad \text { for every } n \in \mathbb{N}
$$

ANSWER: We want to prove that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) P(n), \tag{13}
\end{equation*}
$$

where $P(n)$ is the predicate " $n<2^{n}$ ".
We will prove (13) by induction.
Basis step. We prove $P(1)$. Statement $P(1)$ says " $1<2$ " which is obviously true. So we have proved $P(1)$.
Inductive step. We have to prove that

$$
\begin{equation*}
(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1)) \tag{14}
\end{equation*}
$$

Let $n \in \mathbb{N}$ be arbitrary. We want to prove that $P(n) \Longrightarrow P(n+1)$.
Assume $P(n)$. Then

$$
\begin{equation*}
n<2^{n} . \tag{15}
\end{equation*}
$$

And then

$$
\begin{aligned}
n+1 & <2^{n}+1 \\
& <2^{n}+2^{n} \\
& =2.2^{n} \\
& =2^{n+1}
\end{aligned}
$$

So

$$
\begin{equation*}
n+1<2^{n+1} \tag{16}
\end{equation*}
$$

This means that $P(n+1)$ holds, and our inductive proof is complete. Q.E.D.

Problem 6. Define each of the following concepts:

1. union,.
2. intersection,
3. subset,
4. power set,
5. Cartesian product of sets.

ANSWER:

Definition of "union": Let A, B be sets. Then the union of A and B is the set $A \cup B$ given by

$$
A \cup B=\{x: x \in A \vee x \in B\} .
$$

Definition of "intersection": Let A, B be sets. Then the intersection of A and B is the set $A \cap B$ given by

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

Definition of "subset": Let A, B be sets. We say that A is a subset of B, and write " $A \subseteq B$ ", if every member of A is a member of B. That is,

$$
A \subseteq B \Longleftrightarrow(\forall x)(x \in A \Longrightarrow x \in B)
$$

Definition of "power set": Let A be a set. The power set of A is the set $\mathcal{P}(A)$ of all the subsets of A. That is,

$$
\mathcal{P}(A)=\{X: X \subseteq A\} .
$$

Definition of "Cartesian product": Let A, B be sets. The Cartesian product of A and B is the set $A \times B$ of all the ordered pairs (a, b) such that $a \in A$ and $b \in B$. That is,

$$
A \times B=\{x:(\exists a \in A)(\exists b \in B) x=(a, b)\} .
$$

Equivalently,

$$
A \times B=\{(a, b): a \in A \wedge b \in B\} .
$$

Problem 7. For each of the following sentences:
i. Translate the sentence into English. Please write normal-sounding sentences. Do not write horrible things like "for every member of the set of integers" when you can say instead "for every integer".
ii. Indicate if the sentence is true or false.
iii. Give a reason (i.e., a brief proof) for your true-false answer to part ii.

1. $(\forall X) \emptyset \in X$.

ANSWER: For every set X, the empty set belongs to X. This is false. Proof: To disprove the universal sentence " $(\forall X) \ldots$ ", we give a counterexample. Let $X=\emptyset$. Then \emptyset is not a member of X, because X has no members.
2. $(\forall X) \emptyset \subseteq X$.

ANSWER: For every set X, the empty set is a subset of X. This is true. Proof: To prove the universal sentence " $(\forall X) \ldots$. ., we use Rule $\forall_{\text {prove }}$, and start with "Let X be arbitrary". Let X be an arbitrary set. We want to prove " $\emptyset \subseteq X$ ", i.e., $(\forall x)(x \in \emptyset \Longrightarrow x \in X)$. Let x be arbitrary. Then the implication " $x \in \emptyset \Longrightarrow x \in X$ " is true, because it's an implication whose premise is false, since \emptyset has no members. So $(\forall x)(x \in \emptyset \Longrightarrow x \in X)$. So $\emptyset \subseteq X$.
3. $(\forall X) \emptyset \in \mathcal{P}(X)$.

ANSWER: For every set X, the empty set belongs to the power set $\mathcal{P}(X)$. This is true. Proof: To prove the universal sentence " $\forall X) \ldots$ ", we use Rule $\forall_{\text {prove }}$, and start with "Let X be arbitrary". Let X be an arbitrary set. We know that \emptyset is a subset of X. And the power set of X is emptysetthe set of all subets of X. Hence $\emptyset \in \mathcal{P}(X)$.
4. $(\forall X) \emptyset \subseteq \mathcal{P}(X)$.

ANSWER: For every set X, the empty set is a subset of the power set $\mathcal{P}(X)$. This is true. Proof: The empty set is a subset of every set, so in particular it is a subset of the set $\mathcal{P}(X)$.
5. $(\forall X)\{\emptyset\} \subseteq X$

ANSWER: For every set X, the singleton of the empty set is a subset of X. This is false. Proof: To disprove the universal sentence " $(\forall X) \ldots$ ", we give a counterexample. Let X be the empty set. Then X has no members, so $\emptyset \notin X$. Now the set $\{\emptyset\}$ is a subset of X if and only if every member of $\{\emptyset\}$ belongs to X, that is, if and only if $\emptyset \in X$. But $\emptyset \notin X$, so $\{\emptyset\}$ is not a subset of X.
6. $(\forall X)\{\emptyset\} \in \mathcal{P}(X)$.

ANSWER: For every set X, the singleton of the empty set belongs to the power set $\mathcal{P}(X)$. This is false. Proof: To disprove the universal sentence " $(\forall X) \ldots$.., we give a counterexample. Let X be the empty set. Then X has no members, so $\emptyset \notin X$. Now the set $\{\emptyset\}$ is a subset of X if and only if every member of $\{\emptyset\}$ belongs to X, that is, if and only if $\emptyset \in X$. But $\emptyset \notin X$, so $\{\emptyset\}$ is not a subset of X. Therefore $\{\emptyset\}$ is not a member of $\mathcal{P}(X)$.
7. $(\forall X)\{\emptyset\} \subseteq \mathcal{P}(X)$.

ANSWER: For every set X, the singleton of the empty set is a subset of the power set $\mathcal{P}(X)$. This is true. Proof: To prove the universal sentence " $(\forall X) \ldots$ ", we use Rule $\forall_{\text {prove }}$, and start with "Let X be arbitrary". Let X be an arbitrary set. We want to prove $\{\emptyset\} \subseteq \mathcal{P}(X)$. To prove this, we have to prove that every member of $\{\emptyset\}$ is in $\mathcal{P}(X)$. And this is true because the only member of $\{\emptyset\}$ is \emptyset, and we know that $\emptyset \in \mathcal{P}(X)$.
8. $(\forall m \in \mathbb{N})(\forall k \in \mathbb{N})\{n \in \mathbb{N}: m \mid n\} \subseteq\{n \in \mathbb{N}: k m \mid n\}$.

ANSWER: For all natural numbers m, k, the set of all natural numbers that are divisible by m is a subset of the set of all natural numbers that are divisible by km . This is false. Proof: To disprove the universal sentence " $(\forall m \in \mathbb{N})(\forall k \in \mathbb{N}) \ldots$., we give a counterexample. Take $m=2, k=2$. Then $\{n \in \mathbb{N}: m \mid n\}$ is the set of all even natural numbers, and the set $\{n \in \mathbb{N}: k m \mid n\}$ is the set of all natural numbers that are divisible by 4 . Clearly, the first set is ot subset of the second set.
9. $(\forall m \in \mathbb{N})(\forall k \in \mathbb{N})\{n \in \mathbb{N}: k m \mid n\} \subseteq\{n \in \mathbb{N}: m \mid n\}$.

ANSWER: For all natural numbers m, k, the set of all natural numbers that are divisible by $k m$ is a subset of the set of all natural numbers that are divisible by m. This is true. Proof: To prove the universal sentence " $(\forall m \in \mathbb{N})(\forall k \in \mathbb{N}) \ldots$.., we use Rule $\forall_{\text {prove }}$, and start with "Let m, k be arbitrary". Let m, k be arbitrary natural numbers. Define sets A, B by letting $A=\{n \in \mathbb{N}: k m \mid n\}, B=\{n \in \mathbb{N}: m \mid n\}$. If $n \in A$, then we can write $n=m k j, j \in \mathbb{Z}$. Then $m \mid n$, so $n \in B$. Hence $A \subseteq B$.
10. $(\forall x \in \mathbb{R})\left(x>0 \Longrightarrow(\exists u \in \mathbb{R})(\forall v \in \mathbb{R})\left(v>u \Longrightarrow v^{2}<x\right)\right)$

ANSWER: For every positive real number x there exists a real number u such that every real number v for which $v>u$ satisfies $v^{2}<x$. This is false. Proof: Suppose the statement was true. Then the statement " $(\exists u \in \mathbb{R})(\forall v \in \mathbb{R})\left(v>u \Longrightarrow v^{2}<x\right)$ ", obtained by specializing to $x=1$,
would be true ${ }^{2}$. Then we can pick a witness u_{*}, so u_{*} is a real number such that $(\forall v \in \mathbb{R})\left(v>u_{*} \Longrightarrow v^{2}<1\right)$. Let $v_{*}=1+\max \left(u_{*}, 1\right)$. Then $v_{*}>u_{*}$, so $v_{*}^{2}<1$. But $v_{*}>1$, so $v_{*}^{2}>1$. So we have arrived at a contradiction.
11. $(\forall x \in \mathbb{R})\left(x>0 \Longrightarrow(\exists u \in \mathbb{R})(\forall v \in \mathbb{R})\left(v>u \Longrightarrow \frac{1}{v^{2}}<x\right)\right)$

ANSWER: For every positive real number x there exists a real number u such that every real number v for which $v>u$ satisfies $v^{2}<x$. This is true. Proof: Let $x \in \mathbb{R}$ be arbitrary. Suppose $x>0$. Pick $u_{*}=\frac{1}{\sqrt{x}}$. We show that u_{*} is a witness for the statement " $(\exists u \in \mathbb{R})(\forall v \in \mathbb{R})\left(v>u \Longrightarrow \frac{1}{v^{2}}<\right.$ $x)$ ". To show this, we have to prove that $(\forall v \in \mathbb{R})\left(v>u_{*} \Longrightarrow \frac{1}{v^{2}}<x\right)$. Let v be an arbitrary real number. Assume $v>u_{*}$. Then $v^{2}>u_{*}^{2}$, so $\frac{1}{v_{*}^{2}}<\frac{1}{u_{*}^{2}}$. But $\frac{1}{u_{*}^{2}}=x$, so $\frac{1}{v_{*}^{2}}<x$, as desired.

Problem 8. Prove the existence part of the Fundamental Theorem of Arithmetic (FTA): if $n \in \mathbb{N}$ and $n \geq 2$ then n is a product of primes, that is, there exist $k \in \mathbb{N}$ and a list $\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ of prime numbers such that

$$
n=\prod_{j=1}^{k} p_{j}
$$

ANSWER:

Let B be the set of all natural numbers n such that $n \geq 2$ and n is not a product of primes.

We want to prove that the set B is empty. For this purpose, we assume that B is not empty and try to get a contradiction.

So assume that $B \neq \emptyset$. By the well-ordering principle, B has a smallest member b. Then $b \in B$, so
a. b is a natural number,
b. $b \geq 2$,
c. b is not a product of primes .

[^1]And, in addition,
d. b is the smallest member of B, that is,

$$
(\forall m)(m \in B \Longrightarrow m \geq b)
$$

Since b is not a product of primes, it follows in particular that b is not prime. (Reason: if b was prime, then b would be a product of primes according to our definition.)
Since b is not prime, there are two possibilities: either $b=1$ or b has a factor k which is a natural number such that $k \neq 1$ and $k \neq b$.
But the fist possibility ($b=1$) cannot arise, because $b \geq 2$.
Hence the second possibility occurs. That is, we can pick a natural number k such that k divides $b, k \neq 1$, and $k \neq b$.
Since $k \mid b$, we can write

$$
b=j k, \quad j \in \mathbb{Z} .
$$

And then j has to be a natural number. (Reason: we know that $k \in \mathbb{N}$, so $k>0$. If j was ≤ 0, it would follow that $k j \leq 0$. But $k j=b$ and $b>0$.)
Then $j \neq 1$ and $j \neq b$. (Reason: j cannot be 1 because if $j=1$ then it would follow from $b=j k$ that $k=b$, and we know that $k \neq b$. And j cannot be b because if $j=b$ then it would folows from $b=j k$ that $k=1$, and we know that $k \neq 1$.)
Then $j<b$ and $k<b$. (Reason: $k \geq 1$, because $k \in \mathbb{N}$; so $k>1$, because $k \neq 1$; so $k \geq 2$; and then if j was $\geq b$ it would follow that $j k \geq 2 j>j>b$, but $j k=b$. The proof that $k<b$ is exactly the same.)
Hence $j \notin B$ (because b is the smallest member of B, and $j<b$). And $j \geq 2$ (because $j>1$). This means that j is a product of primes (because if j wasn't a product of primes it would be in B).
Similarly, k is a product of primes. So we can write $j=\prod_{i=1}^{m} p_{i}$ and $k=\prod_{\ell=1}^{\mu} q_{\ell}$, where $m \in \mathbb{N}, \mu \in \mathbb{N}$, and the p_{i} and the q_{ℓ} are primes. But then

$$
b=\left(\prod_{i=1}^{m} p_{i}\right) \times\left(\prod_{\ell=1}^{\mu} q_{\ell}\right)
$$

so b is a product of primes.
But we know that b is not a product of primes. So we got two contradictory statements.

This contradiction was derived by assuming that $B \neq \emptyset$. So $B=\emptyset$, and this proves that every natural number n such that $n \geq 2$ is a product of primes, which is our desired conclusion.
Q.E.D.

[^0]: ${ }^{1}$ This proof was unknown to me until Sunday December 9, when I found it in one of the papers I was grading. It's really a nice proof.

[^1]: ${ }^{2}$ Notice that what we are doing here is exactly "disproving the universal statement $(\forall x \in \mathbb{R}) P(x) \ldots$ by giving a counterexample". We are taking x to be 1 , and showing that for that x the sentence $P(x)$ is not true. and we are proving that by contradiction: if $P(x)$-that is, " $x>0 \Longrightarrow(\exists u \in \mathbb{R})(\forall v \in \mathbb{R})\left(v>u \Longrightarrow v^{2}<x\right)$ "- was true, then $(\exists u \in \mathbb{R})(\forall v \in \mathbb{R})\left(v>u \Longrightarrow v^{2}<x\right)$ would be true-because x is positive - so we could pick a witness u_{*}, etc.

