MATHEMATICS 300 — FALL 2017

Introduction to Mathematical Reasoning
H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 10, DUE ON WEDNESDAY, NOVEMBER 15

- I. Problems 42, 43 and 44 from the ninth set of lecture notes.
- II. If $a \in \mathbb{R}$, $\varepsilon \in \mathbb{R}$, and $\varepsilon > 0$, then the ε -neighborhood of a is the set $N_{\varepsilon}(a)$ given by

$$N_{\varepsilon}(a) = \{ x \in \mathbb{R} : a - \varepsilon < x < a + \varepsilon \}.$$

A subset U of \mathbb{R} is open if the following is true:

(*) for every member a of U there exists a positive real number ε such that $N_{\varepsilon}(a) \subseteq U$.

Prove that

- 1. If U and V are open subsets of \mathbb{R} , then $U \cap V$ and $U \cup V$ are open.
- 2. If a, b are real numbers, then the set]a, b[given by

$$]a,b[=\{x \in \mathbb{R}: a < x \wedge x < b\}$$

is an open set.

3. If a, b are real numbers and $a \leq b$, then the set [a, b] given by

$$[a,b] = \{x \in \mathbb{R} : a \le x \land x \le b\}$$

is not an open set.

- III. If a, b, c are integers, a greatest common divisor of a, b and c is an integer q such that
 - 1. g divides a, g divides b, and g divides c.

- 2. If d is an arbitrary integer such that d divides a, d divides b, and d divides c, it follows that $d \leq g$.
- A. **Prove** that if $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, $c \in \mathbb{Z}$, and $a \neq 0 \lor b \neq 0 \lor c \neq 0$ then
 - 1. there exists a unique integer g such that g is a geatest common divisor of a, b, and c,
 - 2. the integer g satisfies:
 - (a) $g \in \mathbb{N}$,
 - (b) there exist integers u, v, w such that q = ua + vb + wc.
- B. **Prove or disprove** each of the following results:
 - 1. If a, b, c are integers none of which is equal to zero, and the greatest common divisor of a, b, c is equal to 1, and n is an integer that is divisible by a, b and c, then n is divisible by the product abc.
 - 2. If a, b, c are integers none of which is equal to zero, and the greatest common divisors GCD(a, b), GCD(a, c), GCD(b, c) are equal to 1, and n is an integer that is divisible by a, b and c, then n is divisible by the product abc.