MATHEMATICS 300 — FALL 2017

Introduction to Mathematical Reasoning
H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 13, DUE ON WEDNESDAY, DECEMBER 13

This assignment consist of three problems.

In these problems, if a and b are real numbers, we write "[a,b]" to denote the closed interval $\{x \in \mathbb{R} : a \le x \le b\}$, and "[a,b]" to denote the open interval $\{x \in \mathbb{R} : a < x < b\}$.

If A is a subset of \mathbb{R} , an interior point of A is a point $a \in A$ such that the open interval $|a - \varepsilon, a + \varepsilon|$ is a subset of A for some positive¹ real number ε .

If A is a set, then the identity map of A is the function I_A such that (1) $\text{Dom}(I_A) = A$, and $\overline{(2)} I_A(x) = x$ for every $x \in A$.

Problem 1. *Prove* that if X is a set then there does not exist a one-to-one function² $f: \mathcal{P}(X) \longrightarrow X$.

Problem 2. *Prove* that if $f: A \longrightarrow B$, then f is a bijection from A to B if and only if the following is true:

(#) There exists a function $g: B \longrightarrow A$ such that $g \circ f = I_A$ and $f \circ g = I_B$.

Problem 3.

- 1. Let f, g be the functions defined by
 - (i) $Dom(f) = \mathbb{R}$,
 - (ii) $f(x) = \frac{x}{\sqrt{1+x^2}}$ for $x \in \mathbb{R}$,
 - (iii) Dom(g) =]-1, 1[,
 - iv) $g(y) = \frac{y}{\sqrt{1-y^2}}$ for $y \in]-1,1[$,
 - (a) **Prove** that $f: \mathbb{R} \longrightarrow]-1,1[, g:]-1,1[\longrightarrow \mathbb{R}, g \circ f = I_{\mathbb{R}}, \text{ and } f \circ g = I_{[-1,1[}.$

 $^{^{1}}$ "Positive" means "> 0".

²" $\mathcal{P}(X)$ " stands for "the power set of X". By definition, $\mathcal{P}(X)$ is the set of all subsets of X. That is, $\mathcal{P}(X) = \{U : U \subseteq X\}$.

- (b) **Conclude** from this that \mathbb{R} and the interval]-1,1[have the same cardinality.
- 2. If $a, b \in \mathbb{R}$ and a < b, let $f_{a,b}$ be the function with domain]-1,1[, given by $f_{a,b}(x) = a + \frac{1}{2}(b-a)(x+1)$ for $x \in]-1,1[$. **Prove** that f is a bijection from]-1,1[to]a,b[, and **conclude** from this that \mathbb{R} and the interval]a,b[have the same cardinality.
- 3. **Prove** that if S is a subset of \mathbb{R} such that S has an interior point then S has the same cardinality as \mathbb{R} . (HINT: Use the Cantor-Schroeder-Bernstein theorem. Construct a one-to-one map³ from \mathbb{R} to S and a one-to-one map from S to \mathbb{R} .)
- 4. Let \mathbb{I} be the set of all irrational numbers. **Prove** that \mathbb{I} has the same cardinality as \mathbb{R} .

HINT: Think of a very large hotel in which the rooms correspond to the irrational numbers, in the sense that the hotel has a room x for every $x \in \mathbb{I}$. And think of \mathbb{R} as a set of guests: for each real number r, there is a guest, guest r. You want to put each guest in a room. You can start by putting each guest with an irrational number in a room, by putting guest no. x in room no. x if $x \in \mathbb{I}$. And now you have to find rooms for the guests corresponding to the rational numbers, i.e., the members of \mathbb{Q} . Since the set \mathbb{Q} is countably infinite, there is a bijection $b: \mathbb{N} \longrightarrow \mathbb{Q}$. So the rational numbers are the numbers b(1), b(2), b(3), and so on. Find a sequence x_1, x_2, x_3, \ldots of pairwise distinct irrational numbers (for example, you could take $x_n = n\sqrt{2}$), and move the guests occupying rooms x_1, x_2, x_3, \ldots to rooms x_2, x_4, x_6, \ldots , thereby leaving room for the guests numbered $b(1), b(2), b(3), \ldots$ to be put in rooms x_1, x_3, x_5, \ldots

³ "Map" means the same thing as "function".