MATHEMATICS 300 - FALL 2017
 Introduction to Mathematical Reasoning
 H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 13, DUE ON WEDNESDAY, DECEMBER 13

This assignment consist of three problems.

In these problems, if a and b are real numbers, we write " $[a, b]$ " to denote the closed interval $\{x \in \mathbb{R}: a \leq x \leq b\}$, and " $] a, b$ " to denote the open interval $\{x \in \mathbb{R}: a<x<b\}$.

If A is a subset of \mathbb{R}, an interior point of A is a point $a \in A$ such that the open interval $] a-\varepsilon, a+\varepsilon\left[\right.$ is a subset of A for some positive ${ }^{1}$ real number ε.

If A is a set, then the identity map of A is the function I_{A} such that

Problem 1. Prove that if X is a set then there does not exist a one-to-one function ${ }^{2} f: \mathcal{P}(X) \longrightarrow X$.

Problem 2. Prove that if $f: A \longrightarrow B$, then f is a bijection from A to B if and only if the following is true:
(\#) There exists a function $g: B \longrightarrow A$ such that $g \circ f=I_{A}$ and $f \circ g=I_{B}$.

Problem 3.

1. Let f, g be the functions defined by
(i) $\operatorname{Dom}(f)=\mathbb{R}$,
(ii) $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ for $x \in \mathbb{R}$,
(iii) $\operatorname{Dom}(g)=]-1,1[$,
iv) $g(y)=\frac{y}{\sqrt{1-y^{2}}}$ for $\left.y \in\right]-1,1[$,
(a) Prove that $f: \mathbb{R} \longrightarrow]-1,1[, g:]-1,1\left[\longrightarrow \mathbb{R}, g \circ f=I_{\mathbf{R}}\right.$, and $f \circ g=I_{]-1,1[}$.

[^0](b) Conclude from this that \mathbb{R} and the interval $]-1,1[$ have the same cardinality.
2. If $a, b \in \mathbb{R}$ and $a<b$, let $f_{a, b}$ be the function with domain $]-1,1[$, given by $f_{a, b}(x)=a+\frac{1}{2}(b-a)(x+1)$ for $\left.x \in\right]-1,1[$. Prove that f is a bijection from $]-1,1[$ to $] a, b[$, and conclude from this that \mathbb{R} and the interval $] a, b[$ have the same cardinality.
3. Prove that if S is a subset of \mathbb{R} such that S has an interior point then S has the same cardinality as \mathbb{R}. (HINT: Use the Cantor-SchroederBernstein theorem. Construct a one-to-one map 3 from \mathbb{R} to S and a one-to-one map from S to \mathbb{R}.)
4. Let \mathbb{I} be the set of all irrational numbers. Prove that \mathbb{I} has the same cardinality as \mathbb{R}.

HINT: Think of a very large hotel in which the rooms correspond to the irrational numbers, in the sense that the hotel has a room x for every $x \in \mathbb{I}$. And think of \mathbb{R} as a set of guests: for each real number r, there is a guest, guest r. You want to put each guest in a room. You can start by putting each guest with an irrational number in a room, by putting guest no. x in room no. x if $x \in \mathbb{I}$. And now you have to find rooms for the guests corresponding to the rational numbers, i.e., the members of \mathbb{Q}. Since the set \mathbb{Q} is countably infinite, there is a bijection $b: \mathbb{N} \longrightarrow \mathbb{Q}$. So the rational numbers are the numbers $b(1), b(2), b(3)$, and so on. Find a sequence $x_{1}, x_{2}, x_{3}, \ldots$ of pairwise distinct irrational numbers (for example, you could take $x_{n}=n \sqrt{2}$), and move the guests occupying rooms $x_{1}, x_{2}, x_{3}, \ldots$ to rooms $x_{2}, x_{4}, x_{6}, \ldots$, thereby leaving room for the guests numbered $b(1), b(2), b(3), \ldots$ to be put in rooms $x_{1}, x_{3}, x_{5}, \ldots$.

[^1]
[^0]: 1 "Positive" means "> 0".
 2 " $\mathcal{P}(X)$ " stands for "the power set of X ". By definition, $\mathcal{P}(X)$ is the set of all subsets of X. That is, $\mathcal{P}(X)=\{U: U \subseteq X\}$.

[^1]: 3"Map" means the same thing as "function".

