MATHEMATICS 300 - FALL 2017
 Introduction to Mathematical Reasoning
 H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 7, DUE ON WEDNESDAY, OCTOBER 25

In these problems " $\mathbb{N} \cup\{0\}$ " stands for the set of all nonegative integers, so that $\mathbb{N} \cup\{0\}$ is the union of \mathbb{N}, the set of all natural numbers, and the set $\{0\}$ whose only member is the number 0 . Then

$$
\mathbb{N} \cup\{0\}=\{n \in \mathbb{Z}: n \geq 0\} .
$$

Recall that, by definition,

$$
\sum_{k=1}^{0} a_{k}=0, \quad \prod_{k=1}^{0} a_{k}=1, \quad 0!=1, \quad a^{0}=1
$$

1. Prove that if n is a natural number then

$$
\sum_{k=1}^{n} \frac{1}{k^{2}} \leq 2-\frac{1}{n}
$$

2. Prove that if $n \in \mathbb{N} \cup\{0\}$ then

$$
\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{n}{2 n+1}
$$

3. Prove that if r is real number, and $n \in \mathbb{N} \cup\{0\}$, then

$$
\sum_{k=0}^{n} r^{k}=\left\{\begin{array}{lll}
\frac{1-r^{n+1}}{1-r} & \text { if } & r \neq 1 \\
n+1 & \text { if } & r=1
\end{array}\right.
$$

(NOTE: " $\sum_{k=0}^{n} a_{k}$ " is defined inductively, exactly as " $\sum_{k=1}^{n} a_{k}$ " was. The only difference is that we start at 0 rather than 1 . So the definition is:

$$
\begin{aligned}
& \sum_{k=0}^{0} a_{k}=a_{0} \\
& \sum_{k=0}^{n+1} a_{k}=\left(\sum_{k=0}^{n} a_{k}\right)+a_{n+1} \quad \text { for } n \in \mathbb{N} \cup\{0\}
\end{aligned}
$$

4. Prove that if $n \in \mathbb{N} \cup\{0\}$ then

$$
\prod_{j=1}^{n}\left(1-\frac{1}{j+1}\right)=\frac{1}{n+1}
$$

5. Prove that if $n \in \mathbb{N} \cup\{0\}$ then

$$
\prod_{\ell=1}^{n}(2 \ell-1)=\frac{(2 n)!}{2^{n} n!}
$$

6. Prove that

$$
\sum_{j=1}^{n} \frac{1}{\sqrt{j}}>\sqrt{n} \quad \text { for all } n \in \mathbb{N} \text { such that } n \geq 2
$$

7. Book, problem 11 on page 126 .

A hint for Problem 7

Let $P(n)$ be the sentence "every tournament with n players has a top player". You want to prove $(\forall n \in \mathbb{N}) P(n)$ by induction.

For the basis step, remember that
A sentence of the form

$$
\begin{equation*}
(\forall x)(x \in S \Longrightarrow A(x)) \tag{0.1}
\end{equation*}
$$

is true if the set S is the empty set.

Sentences of the form (0.1) are said to be vacuously true, that is, true because the set S is "vacuous", i.e., empty.

We discussed in class the reason that (0.1) is true: to prove that the statement " $(\forall x)(x \in S \Longrightarrow A(x))$ " is true, we have to prove that the statement " $x \in S \Longrightarrow A(x)$ " is true for every x. Let x be an arbitrary thing. Then " $x \in S$ " is false, because S has no members, so x is not a member of S. Since " $x \in S$ " is false, the implication " $x \in S \Longrightarrow A(x)$ " is true.

For the inductive step, you want to take an arbitrary natural number n, and prove the implication " $P(n) \Longrightarrow P(n+1)$ ". For that purpose, you assume that $P(n)$ is true, and try to prove that $P(n+1)$ is true. So we find ourselves in the following situation: we know that
$\left.{ }^{*}\right)$ every tournament with n players has a top player,
and we want to prove that
$\left.{ }^{* *}\right)$ every tournament with $n+1$ players has a top player,
In order to prove $\left({ }^{* *}\right)$, we let T be an arbitrary tournament with $n+1$ players, and we must prove that T has a top player. Since we can use $\left({ }^{*}\right)$, the natural thing to do is this:

- From T, which is a tournament with $n+1$ players, construct a tournament S with n players.
- Using $\left(^{*}\right)$, conclude that S has a top player.
- Then use the top player of S to get a top player of T, by either:
- proving that the top player of S is a top player of T
or
- constructing, from the top player of S, a top player of T.

In order to construct an n-players tournament S from the $n+1$-players tournament T, the most natural thing to do is to pick one player of T and remove that player.

So the proposed strategy for the proof of $P(n+1)$, assuming $P(n)$, would be as follows:
(1) Pick one player ${ }^{1}$ from the set of players of T, call this player p, and remove p from the set of players of T, thus obtaining a tournament S with n players.
(2) Using $\left(^{*}\right)$, conclude that S has a top player.
(3) Pick a top player ${ }^{2}$ of S and call it q.
(4) Then use the fact that q is a top player of S to prove that T has a top player. And several things may happen:
(I) Maybe we can prove that q itself must be a top player of T.
(II) Maybe we can use the fact that q is a top player of S to prove that some other player of T-for example p-is a top player of T.
(III) Maybe we can prove that either q is a top player of T or some other player of T-for example p-is a top player of T.

What you have to do is this

1. First, you have to figure out how to choose the player p of T that you are going to remove. It may be that
a. You can just pick p any way you want, and then from the fact that S has a top player you will be able to prove that T has a top player.

Or, maybe,
b. You cannot just pick p in any way you want, but you have to be smart and make an intelligent choice of p.

[^0]2. Second, once you have decided how to choose p, and used it to construct S and find a top player of S called q, you have to figure out how to prove that T has a top player.
3. And it may happen that these two things are related. For example, it could happen that if you choose p to be just an arbitrary player of T, then you cannot prove that T has a top player, but if you choose p in a smart way, then maybe you will be able to prove that T has a top player. And you may even be able to prove that q is a top player of T.

A suggestion: Start by picking a player p of T You can do this by writing
Let p be a player of T that satisfies the following condition:
And leave some blank space after that (about four or five lines), so that later, once you know what condition on p you need, you will be able to go back and fill in the blank, and end up with "Let p be a player of T that satisfies the following condition: XXX." (And instead of "XXX" you will write the condition that p has to satisfy, once you know what that condition is.

Then remove p from T, thus constructing the new tournament S.
Then pick a top player of S (which you can do thanks to the inductive hypothesis) and call it q.

Then try to prove that q is a top player of T. You will not be able to, but you will see that your proof that q is a top player of T does work, provided that p satisfies some extra condition K.

Then go back to the first step, fill in the blank by choosing p in such a way that p satisfies condition K.

And make sure that you prove that there does exist a player that satisfies the condition. (This is important: if you cannot prove that there exists a player of T that satisfies Condition K, then you cannot apply Rule $\exists_{\text {use }}$ and pick a player of T that satisfies conditon K.)

Then you can easily finish your proof.
WARNING: Here is an example of the kind of thing that could go wrong. You will obviously discover that the following condition $K_{\text {bad }}$ works:
$\left(K_{b a d}\right) p$ is beaten by all the other players of T.
This condition works perfectly. (Proof: Once you know that q is a top player of S, it follows that for every player s of S such that $s \neq q$, either q beats s
or q beats some player that beats s. So the only thing missing to prove that q is a top player of T is to show that q beats p or beats some player that beats p. But we know that p is beaten by all the players of T other than p. So in particular q beats p, and this proves that q is a top player of T, and we are dobe.)

The trouble with this argument is this: there is no reason to believe that a player that loses to all the other players of T exists. So we cannot prove that there exists a player of T that satisfies condition $K_{b a d}$. And then we are not allowed to apply Rule $\exists_{\text {use }}$ and pick a player that satisfies condition $K_{\text {bad }}$ and call it p.

CONCLUSION: The condition K that you need cannot be a simple, naïve condition such as $K_{\text {bad }}$. You need something more sophisticated. And for that you have to THINK.

[^0]: ${ }^{1}$ Notice that here we are applying Rule $\exists_{\text {use }}$, the rule for using existential sentences: if you know that $(\exists x) A(x)$, then you can introduce an object, call this object a, and stipulate that $A(a)$. In our case, $A(x)$ is the sentence " x is a player of T ". Since T has $n+1$ players, it follows that T has at least one player, so the sentence " $\exists x) A(x)$ " is true. Then we are picking an object, calling it p, and stipulating that $A(p)$, i.e., that p is a player of T.
 ${ }^{2}$ Notice that here we are applying again Rule $\exists_{\text {use }}$, the rule for using existential sentences: if you know that $(\exists x \in C) A(x)$, then you can introduce an object, call this object a, and stipulate that $a \in C$ and $A(a)$. In our case, C is the set of players of S, and $A(x)$ is the sentence " x is a top player of S ". (*) tells us that S has a top player, i.e., that $(\exists x \in C) A(x)$. Then we are picking an object, calling it q, and stipulating that $q \in C$ (i.e., q is a player of S) and $A(q)$, i.e., q is a top player of S.

