MATHEMATICS 300 — FALL 2017

Introduction to Mathematical Reasoning
H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 7, DUE ON WEDNESDAY, OCTOBER 25

In these problems " $\mathbb{N} \cup \{0\}$ " stands for the set of all nonegative integers, so that $\mathbb{N} \cup \{0\}$ is the union of \mathbb{N} , the set of all natural numbers, and the set $\{0\}$ whose only member is the number 0. Then

$$\mathbb{N} \cup \{0\} = \{n \in \mathbb{Z} : n \ge 0\}.$$

Recall that, by definition,

$$\sum_{k=1}^{0} a_k = 0, \qquad \prod_{k=1}^{0} a_k = 1, \qquad 0! = 1, \qquad a^0 = 1.$$

1. **Prove** that if n is a natural number then

$$\sum_{k=1}^{n} \frac{1}{k^2} \le 2 - \frac{1}{n} \,.$$

2. **Prove** that if $n \in \mathbb{N} \cup \{0\}$ then

$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}.$$

3. **Prove** that if r is real number, and $n \in \mathbb{N} \cup \{0\}$, then

$$\sum_{k=0}^{n} r^{k} = \begin{cases} \frac{1-r^{n+1}}{1-r} & \text{if } r \neq 1\\ n+1 & \text{if } r = 1 \end{cases}.$$

(NOTE: " $\sum_{k=0}^{n} a_k$ " is defined inductively, exactly as " $\sum_{k=1}^{n} a_k$ " was. The only difference is that we start at 0 rather than 1. So the definition is:

$$\sum_{k=0}^{0} a_{k} = a_{0},$$

$$\sum_{k=0}^{n+1} a_{k} = \left(\sum_{k=0}^{n} a_{k}\right) + a_{n+1} \quad \text{for } n \in \mathbb{N} \cup \{0\}.$$

4. **Prove** that if $n \in \mathbb{N} \cup \{0\}$ then

$$\prod_{j=1}^{n} \left(1 - \frac{1}{j+1} \right) = \frac{1}{n+1} \,.$$

5. **Prove** that if $n \in \mathbb{N} \cup \{0\}$ then

$$\prod_{\ell=1}^{n} (2\ell - 1) = \frac{(2n)!}{2^n n!}.$$

6. **Prove** that

$$\sum_{j=1}^{n} \frac{1}{\sqrt{j}} > \sqrt{n} \quad \text{for all } n \in \mathbb{N} \text{ such that } n \ge 2.$$

7. Book, problem 11 on page 126.

A hint for Problem 7

Let P(n) be the sentence "every tournament with n players has a top player". You want to prove $(\forall n \in \mathbb{N})P(n)$ by induction.

For the $basis\ step$, remember that

A sentence of the form

$$(\forall x)(x \in S \Longrightarrow A(x)) \tag{0.1}$$

is true if the set S is the empty set.

Sentences of the form (0.1) are said to be **vacuously true**, that is, true because the set S is "vacuous", i.e., empty.

We discussed in class the reason that (0.1) is true: to prove that the statement " $(\forall x)(x \in S \Longrightarrow A(x))$ " is true, we have to prove that the statement " $x \in S \Longrightarrow A(x)$ " is true for every x. Let x be an arbitrary thing. Then " $x \in S$ " is false, because S has no members, so x is not a member of S. Since " $x \in S$ " is false, the implication " $x \in S \Longrightarrow A(x)$ " is true.

For the *inductive step*, you want to take an arbitrary natural number n, and prove the implication " $P(n) \Longrightarrow P(n+1)$ ". For that purpose, you assume that P(n) is true, and try to prove that P(n+1) is true. So we find ourselves in the following situation: we know that

(*) every tournament with n players has a top player,

and we want to prove that

(**) every tournament with n+1 players has a top player,

In order to prove (**), we let T be an arbitrary tournament with n+1 players, and we must prove that T has a top player. Since we can use (*), the natural thing to do is this:

- From T, which is a tournament with n+1 players, construct a tournament S with n players.
- Using (*), conclude that S has a top player.
- Then use the top player of S to get a top player of T, by either:
 - proving that the top player of S is a top player of T

or

- constructing, from the top player of S, a top player of T.

In order to construct an n-players tournament S from the n+1-players tournament T, the most natural thing to do is to pick one player of T and remove that player.

So the proposed strategy for the proof of P(n+1), assuming P(n), would be as follows:

- (1) Pick one player¹ from the set of players of T, call this player p, and remove p from the set of players of T, thus obtaining a tournament S with n players.
- (2) Using (*), conclude that S has a top player.
- (3) Pick a top player² of S and call it q.
- (4) Then use the fact that q is a top player of S to prove that T has a top player. And several things may happen:
 - (I) Maybe we can prove that q itself must be a top player of T.
 - (II) Maybe we can use the fact that q is a top player of S to prove that some other player of T—for example p—is a top player of T.
 - (III) Maybe we can prove that either q is a top player of T or some other player of T—for example p—is a top player of T.

What you have to do is this

- 1. First, you have to figure out how to choose the player p of T that you are going to remove. It may be that
 - a. You can just pick p any way you want, and then from the fact that S has a top player you will be able to prove that T has a top player.

Or, maybe,

b. You cannot just pick p in any way you want, but you have to be smart and make an intelligent choice of p.

¹Notice that here we are applying Rule \exists_{use} , the rule for using existential sentences: if you know that $(\exists x)A(x)$, then you can introduce an object, call this object a, and stipulate that A(a). In our case, A(x) is the sentence "x is a player of T". Since T has n+1 players, it follows that T has at least one player, so the sentence " $(\exists x)A(x)$ " is true. Then we are picking an object, calling it p, and stipulating that A(p), i.e., that p is a player of T.

²Notice that here we are applying again Rule \exists_{use} , the rule for using existential sentences: if you know that $(\exists x \in C)A(x)$, then you can introduce an object, call this object a, and stipulate that $a \in C$ and A(a). In our case, C is the set of players of S, and A(x) is the sentence "x is a top player of S". (*) tells us that S has a top player, i.e., that $(\exists x \in C)A(x)$. Then we are picking an object, calling it q, and stipulating that $q \in C$ (i.e., q is a player of S) and A(q), i.e., q is a top player of S.

- 2. Second, once you have decided how to choose p, and used it to construct S and find a top player of S called q, you have to figure out how to prove that T has a top player.
- 3. And it may happen that these two things are related. For example, it could happen that if you choose p to be just an arbitrary player of T, then you cannot prove that T has a top player, but if you choose p in a smart way, then maybe you will be able to prove that T has a top player. And you may even be able to prove that q is a top player of T.

A suggestion: Start by picking a player p of T You can do this by writing

Let p be a player of T that satisfies the following condition:

And leave some blank space after that (about four or five lines), so that later, once you know what condition on p you need, you will be able to go back and fill in the blank, and end up with "Let p be a player of T that satisfies the following condition: XXX." (And instead of "XXX" you will write the condition that p has to satisfy, once you know what that condition is.

Then remove p from T, thus constructing the new tournament S.

Then pick a top player of S (which you can do thanks to the inductive hypothesis) and call it q.

Then try to prove that q is a top player of T. You will not be able to, but you will see that your proof that q is a top player of T does work, provided that p satisfies some extra condition K.

Then go back to the first step, fill in the blank by choosing p in such a way that p satisfies condition K.

And make sure that you prove that there does exist a player that satisfies the condition. (This is important: if you cannot prove that there exists a player of T that satisfies Condition K, then you cannot apply Rule \exists_{use} and pick a player of T that satisfies condition K.)

Then you can easily finish your proof.

WARNING: Here is an example of the kind of thing that could go wrong. You will obviously discover that the following condition K_{bad} works:

 (K_{bad}) p is beaten by all the other players of T.

This condition works perfectly. (Proof: Once you know that q is a top player of S, it follows that for every player s of S such that $s \neq q$, either q beats s

or q beats some player that beats s. So the only thing missing to prove that q is a top player of T is to show that q beats p or beats some player that beats p. But we know that p is beaten by all the players of T other than p. So in particular q beats p, and this proves that q is a top player of T, and we are dobe.)

The trouble with this argument is this: there is no reason to believe that a player that loses to all the other players of T exists. So we cannot prove that there exists a player of T that satisfies condition K_{bad} . And then we are not allowed to apply Rule \exists_{use} and pick a player that satisfies condition K_{bad} and call it p.

CONCLUSION: The condition K that you need cannot be a simple, naïve condition such as K_{bad} . You need something more sophisticated. And for that you have to \mathbf{THINK} .