
MATHEMATICS 300 — FALL 2017
Introduction to Mathematical Reasoning

H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 9,
DUE ON WEDNESDAY, NOVEMBER 8

The six problems listed here are very important, and
you should do them all. But you are only required to
hand in four problems, namely, problems 1, 3, 4 and
6. Problem 6 is the most important one, and will be
worth 40% of the assignment, whereas the other three
problems are worth 20% each.

Some definitions and theorems
Bounded below and bounded above:

Definition 1. If S is a subset of Z, and b is an integer, we say that b is a
lower bound for S if n ≥ b for every member n of S. �

Definition 2. A subset S of Z is bounded below if it has a lower bound,
that is, if there exists an integer b such that

(∀n)(n ∈ S =⇒ n ≥ b) . �

Definition 3. If S is a subset of Z, and b is an integer, we say that b is an
upper bound for S if n ≤ b for every member n of S. �

Definition 4. A subset S of Z is bounded above if it has an upper bound,
that is, if there exists an integer b such that

(∀n)(n ∈ S =⇒ n ≤ b) . �

Coprime integers:

Definition 5. If a, b are integers, we say that a and b are coprime if they
have no nontrivial common factors (that is, if the only integers f such that
f |a and f |b are 1 and −1). �

It follows easily from Definition 5 that if a ∈ Z and b ∈ Z then a and b
are coprime if and only if GCD(a, b) = 1.
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A theorem about coprime numbers and divisibility:

Theorem I. If a, b, c are integers such that a and b are coprime and a divides
bc, then a|c.
Proof. Since a and b are coprime, we can pick integers u, v such that

1 = ua+ vb .

Since a|bc, we can pick an integer k such that

bc = ka .

Then

c = 1× c
= (ua+ vb)c

= uca+ vbc

= uca+ vka

= (uc+ vk)a

so a|c. Q.E.D.

Square-free integers:

Definition 6. An integer n is square-free if there does not exist a natural
number m such that m > 1 and m2 divides n. �

Examples: 33 is square-free, because the only natural numbers that are
factors of 33 are 1, 3, 11, and 33, and none of these is a square and > 1. The
number 48 is not square-free, because 48 is divisible by 22. �

Subgroups of Z:

Definition 7. Let S be a set of integers, i.e., a subset of Z. We say that S
is a subgroup of Z if the following two facts are true about S:

S1. S is nonempty,

S2. S is closed under subtraction; that is, if a, b are arbitrary members of
S, it follows that a− b ∈ S. �
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The homework problems

Problem 1. Prove the following statement, that generalizes the well-
ordering principle:

[WOPG1] If S is a nonempty subset of Z and S is bounded below
then S has a smallest member.

HINT: For an integer k, let us write

Z≥k = {n ∈ Z : n ≥ k} .

So, for example,

1. Z≥3 is the set of all integers that are greater than or equal to 3; that
is, Z≥3 consists of 3, 4, 5, 6, . . . and so on.

2. Z≥0 is the set of all integers that are greater than or equal to 0; that
is, Z≥0 consists of 0, 1, 2, 3, 4, 5, . . . and so on. In other words,
Z≥0 = IN ∪ {0}.

3. Z≥−5 is the set of all integers that are greater than or equal to −5; that
is, Z≥−5 consists of −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, . . . and so on.

Prove by induction on n that the following statement P (n) is true for every
nonnegative integer (that is, for every n belonging to IN ∪ {0}): If S is a
nonempty subset of Z≥−n then S has a smallest member. You should do this
by induction, starting at 0. Here is the base step: we want to prove that
P (0) is true. And P (0) says: if S is a nonempty subset of Z≥0 then S has
a smallest member. To prove this, let S be an arbitrary nonempty subset of
Z≥0. Then either 0 ∈ S or 0 /∈ S. If 0 ∈ S then 0 is clearly the smallest
member of S, because all the members of S are ≥ 0, since S ⊆ Z≥0. If 0 /∈ S
then S is a nonempty subset of IN, so S has a smallest member by the WOP.
You have to do the inductive step.

Problem 2. Prove the following statement, which is also a generalization
of the WOP:

[WOPG2] If S is a nonempty subset of Z and S is bounded above
then S has a largest member.
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HINT: Take the set S and “reflect it”, that is, look at the set

T = {n ∈ Z : −n ∈ S} .

Prove that T is bounded below, use the result of Problem 1 to conclude that
T has a smallest member, and then draw the conclusion that S has a largest
member.

Problem 3. This problem deals with a result that we have already
used many times, for example in the proofs that numbers such as√

2 or
√

3 are irrational. When we used this result, we did not
know how to prove it, because the proof requires the well-ordering
principle (WOP). Now that we have the WOP, I am asking you
to prove the result.

Prove that

[*] If r is a rational number then there exist unique integers m,n
such that

1. n > 0,

2. r = m
n ,

3. m and n are coprime.

(That is, every fraction has a unique coprime expression—also called
“irreducible expression”, or “expression reduced in lowest terms”—that is,
every fraction can be written uniquely as a quotient m

n
of integers in such a

way that m and n have no common factors and n is positive.)

HINT: Use the WOP. To prove existence, let S be the set of all natural
numbers n such that nr is an integer, that is,

S = {n ∈ IN : nr ∈ Z} .

Prove that S is nonempty; then deduce from this, using the WOP, that S
has a smallest member n; then let m = nr, so m ∈ Z and r = m

n
; finally,

prove that m and n are coprime.
To prove uniqueness, assume that r = m1

n1
and r = m2

n2
, where m1, n1,m2,

n2 are integers, n1 > 0, and n2 > 0. Prove that m1 = m2 and n1 = n2 by
observing that m1n2 = m2n1 and then, using the fact that n1 is coprime with
m1, use Theorem I to conclude that n1 must divide n2. Then prove that n2

divides n1. And, finally, using these two facts, conclude that n1 = n2.



Math. 300, Fall 2017 5

Problem 4. Prove that if n is a natural number then there exist unique
natural numbers a, b such that

n = 2a−1(2b− 1) .

HINT: If n = 1, the conclusion is easy. If n ≥ 2, write n as a product∏m
k=1 pk, where p1, p2, . . . , pm are prime numbers such that pk ≤ pk+1 for

k = 1, 2, . . . ,m − 1. Let α be the number of factors in this expression that
are equal to 2, so n = 2α

∏m
k=α+1 pk. (The number α could be zero, if n is

odd.) Let a = α + 1.

Problem 5. Prove that if n is a natural number then there exist unique
natural numbers a, b such that

n = a2b

and b is square-free. (The number b is called the square-free part of n.)

Problem 6. The purpose of this problem is to provide a different
proof of Bézout’s lemma, based on a theorem on the structure
of subgroups of Z. The definition of “subgroup of Z” is given
above. The theorem that completely determines the structure of
all subgroups of Z is Fact 9 below. Bézout’s lemma is Fact 10
below.

If a is an arbitrary integer, we define a subset [a] of Z as follows:

[a] = {n ∈ Z : (∃u ∈ Z)n = ua} .

In other words, [a] is the set of all integers that are multiples of a.

If a, b are arbitrary integers, we define a subset [a, b] of Z as follows:

[a, b] = {n ∈ Z : (∃u ∈ Z)(∃v ∈ Z)n = ua+ vb} .

In other words, [a, b] is the set of all integers that are the sum of a multiple
of a and a multiple of b. Equivalently, [a, b] is the set of all integers that are
integer linear combinations of a and b.

Prove the following facts:

1. If S is a subgroup of Z, then 0 ∈ S.
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2. If S is a subgroup of Z, then S is closed under the “minus” operation,
that is: if a is an arbitrary member of S, it follows that −a ∈ S.

3. If S is a subgroup of Z, then S is closed under addition, that is: if a, b
are arbitrary members of S, it follows that a+ b ∈ S.

4. If S is a subgroup of Z, and a ∈ S, then [a] ⊆ S. That is, every multiple
ua of a member a of S is in S. (HINT: First prove by induction on n,
using Fact 3, that if n ∈ IN and a ∈ S then na ∈ S. Then, using this,
and Facts 1 and 2, prove that ua ∈ S also if u = 0 or u < 0.)

5. If a is an integer, then [a] is a subgroup of Z.

6. If a, b are integers, then [a, b] is a subgroup of Z.

7. If a, b are integers, then [a] ⊆ [b] if and only if b|a.

8. If S and T are subgroups, then S ∩T is a subgroup. (WARNING: The
first thing you will have to prove is that S ∩ T 6= ∅. You know that S
and T are nonempty, because they are subgroups. But it is not true
that the intersection of two nonempty sets is nonempty. So
you cannot prove that S ∩ T 6= ∅ by saying “S is nonempty,
and T is nonempty, so S∩T is nonempty”. You need a more
sophisticated argument.

9. If S is a subgroup of Z, then

(i) there exists a unique nonnegative integer u such that S = [u].

(ii) if S 6= {0}, then the unique nonnegative integer u such that S =
[u] satisfies:

(a) u ∈ IN,

(b) u is the smallest member of S ∩ IN.

(HINT: Observe that either S = {0} or S 6= {0}, and that if S = {0}
then S = [0]. Prove that if S 6= {0} then S ∩ IN 6= ∅. Use the WOP to
conclude that S∩ IN has a smallest member. Call this smallest member
u, so u ∈ IN. Then prove that S = [u] as follows: the inclusion [u] ⊆ S
follows from Fact 4; the inclusion S ⊆ [u] follows from the Division
Theorem: let n ∈ S; then write n = qu+ r with 0 ≤ r < u; then r ∈ S,
because r = n− qs; then r must be 0 because if r > 0 then r ∈ S ∩ IN
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and r < u, contradicting the fact that u is rhe smallest member of
S ∩ IN; so n = qs and then n ∈ [u].)

10. If a, b are integers, and a 6= 0 or b 6= 0, then the smallest member of
[a, b] ∩ IN is the greatest common divisor of a and b. (HINT: We know
from Fact 6 that [a, b] is a subgroup of Z, and then Fact 9 tells us
that [a, b] = [g] for some g ∈ IN. Show that a ∈ [a, b] and b ∈ [a, b],
and conclude from this that g|a and g|b. Finally, show that if c is
any common factor of a and b then c ≤ g as follows: show that every
member of [a, b] is a multiple of c; conclude that [a, b] ⊆ [c]; infer from
this that g ∈ [c]; then g is a multiple of c; deduce from this that c ≤ g.)


