MATHEMATICS 300 — FALL 2017
 Introduction to Mathematical Reasoning
 H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 9, DUE ON WEDNESDAY, NOVEMBER 8

The six problems listed here are very important, and you should do them all. But you are only required to hand in four problems, namely, problems 1, 3, 4 and 6. Problem 6 is the most important one, and will be worth 40% of the assignment, whereas the other three problems are worth 20% each.

Some definitions and theorems

Bounded below and bounded above:

Definition 1. If S is a subset of \mathbb{Z}, and b is an integer, we say that b is a lower bound for S if $n \geq b$ for every member n of S.

Definition 2. A subset S of \mathbb{Z} is bounded below if it has a lower bound, that is, if there exists an integer b such that

$$
(\forall n)(n \in S \Longrightarrow n \geq b)
$$

Definition 3. If S is a subset of \mathbb{Z}, and b is an integer, we say that b is an upper bound for S if $n \leq b$ for every member n of S.
Definition 4. A subset S of \mathbb{Z} is bounded above if it has an upper bound, that is, if there exists an integer b such that

$$
(\forall n)(n \in S \Longrightarrow n \leq b)
$$

Coprime integers:

Definition 5. If a, b are integers, we say that a and b are coprime if they have no nontrivial common factors (that is, if the only integers f such that $f \mid a$ and $f \mid b$ are 1 and -1$)$.

It follows easily from Definition 5 that if $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ then a and b are coprime if and only if $\operatorname{GCD}(a, b)=1$.

A theorem about coprime numbers and divisibility:

Theorem I. If a, b, c are integers such that a and b are coprime and a divides $b c$, then $a \mid c$.

Proof. Since a and b are coprime, we can pick integers u, v such that

$$
1=u a+v b .
$$

Since $a \mid b c$, we can pick an integer k such that

$$
b c=k a .
$$

Then

$$
\begin{aligned}
c & =1 \times c \\
& =(u a+v b) c \\
& =u c a+v b c \\
& =u c a+v k a \\
& =(u c+v k) a
\end{aligned}
$$

so $a \mid c$.
Q.E.D.

Square-free integers:

Definition 6. An integer n is square-free if there does not exist a natural number m such that $m>1$ and $\overline{m^{2} \text { divides } n}$.

Examples: 33 is square-free, because the only natural numbers that are factors of 33 are $1,3,11$, and 33 , and none of these is a square and >1. The number 48 is not square-free, because 48 is divisible by 2^{2}.

Subgroups of \mathbb{Z} :

Definition 7. Let S be a set of integers, i.e., a subset of \mathbb{Z}. We say that S is a subgroup of \mathbb{Z} if the following two facts are true about S :

S1. S is nonempty,
S2. S is closed under subtraction; that is, if a, b are arbitrary members of S, it follows that $a-b \in S$.

The homework problems

Problem 1. Prove the following statement, that generalizes the wellordering principle:
[WOPG1] If S is a nonempty subset of \mathbb{Z} and S is bounded below then S has a smallest member.

HINT: For an integer k, let us write

$$
\mathbb{Z}_{\geq k}=\{n \in \mathbb{Z}: n \geq k\}
$$

So, for example,

1. $\mathbb{Z}_{\geq 3}$ is the set of all integers that are greater than or equal to 3 ; that is, $\mathbb{Z}_{\geq 3}$ consists of $3,4,5,6, \ldots$ and so on.
2. $\mathbb{Z}_{\geq 0}$ is the set of all integers that are greater than or equal to 0 ; that is, $\mathbb{Z}_{\geq 0}$ consists of $0,1,2,3,4,5, \ldots$ and so on. In other words, $\mathbb{Z}_{\geq 0}=\mathbb{N} \cup\{0\}$.
3. $\mathbb{Z}_{\geq-5}$ is the set of all integers that are greater than or equal to -5 ; that is, $\mathbb{Z}_{\geq-5}$ consists of $-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7, \ldots$ and so on.

Prove by induction on n that the following statement $P(n)$ is true for every nonnegative integer (that is, for every n belonging to $\mathbb{N} \cup\{0\}$): If S is a nonempty subset of $\mathbb{Z}_{\geq-n}$ then S has a smallest member. You should do this by induction, starting at 0 . Here is the base step: we want to prove that $P(0)$ is true. And $P(0)$ says: if S is a nonempty subset of $\mathbb{Z}_{\geq 0}$ then S has a smallest member. To prove this, let S be an arbitrary nonempty subset of $\mathbb{Z}_{\geq 0}$. Then either $0 \in S$ or $0 \notin S$. If $0 \in S$ then 0 is clearly the smallest member of S, because all the members of S are ≥ 0, since $S \subseteq \mathbb{Z}_{\geq 0}$. If $0 \notin S$ then S is a nonempty subset of \mathbb{N}, so S has a smallest member by the WOP.
You have to do the inductive step.
Problem 2. Prove the following statement, which is also a generalization of the WOP:
[WOPG2] If S is a nonempty subset of \mathbb{Z} and S is bounded above then S has a largest member.

HINT: Take the set S and "reflect it", that is, look at the set

$$
T=\{n \in \mathbb{Z}:-n \in S\} .
$$

Prove that T is bounded below, use the result of Problem 1 to conclude that T has a smallest member, and then draw the conclusion that S has a largest member.
Problem 3. This problem deals with a result that we have already used many times, for example in the proofs that numbers such as $\sqrt{2}$ or $\sqrt{3}$ are irrational. When we used this result, we did not know how to prove it, because the proof requires the well-ordering principle (WOP). Now that we have the WOP, I am asking you to prove the result.

Prove that
[*] If r is a rational number then there exist unique integers m, n such that

1. $n>0$,
2. $r=\frac{m}{n}$,
3. m and n are coprime.
(That is, every fraction has a unique coprime expression-also called "irreducible expression", or "expression reduced in lowest terms"-that is, every fraction can be written uniquely as a quotient $\frac{m}{n}$ of integers in such a way that m and n have no common factors and n is positive.)
HINT: Use the WOP. To prove existence, let S be the set of all natural numbers n such that $n r$ is an integer, that is,

$$
S=\{n \in \mathbb{N}: n r \in \mathbb{Z}\}
$$

Prove that S is nonempty; then deduce from this, using the WOP, that S has a smallest member n; then let $m=n r$, so $m \in \mathbb{Z}$ and $r=\frac{m}{n}$; finally, prove that m and n are coprime.

To prove uniqueness, assume that $r=\frac{m_{1}}{n_{1}}$ and $r=\frac{m_{2}}{n_{2}}$, where m_{1}, n_{1}, m_{2}, n_{2} are integers, $n_{1}>0$, and $n_{2}>0$. Prove that $m_{1}=m_{2}$ and $n_{1}=n_{2}$ by observing that $m_{1} n_{2}=m_{2} n_{1}$ and then, using the fact that n_{1} is coprime with m_{1}, use Theorem I to conclude that n_{1} must divide n_{2}. Then prove that n_{2} divides n_{1}. And, finally, using these two facts, conclude that $n_{1}=n_{2}$.

Problem 4. Prove that if n is a natural number then there exist unique natural numbers a, b such that

$$
n=2^{a-1}(2 b-1) .
$$

HINT: If $n=1$, the conclusion is easy. If $n \geq 2$, write n as a product $\prod_{k=1}^{m} p_{k}$, where $p_{1}, p_{2}, \ldots, p_{m}$ are prime numbers such that $p_{k} \leq p_{k+1}$ for $k=1,2, \ldots, m-1$. Let α be the number of factors in this expression that are equal to 2 , so $n=2^{\alpha} \prod_{k=\alpha+1}^{m} p_{k}$. (The number α could be zero, if n is odd.) Let $a=\alpha+1$.
Problem 5. Prove that if n is a natural number then there exist unique natural numbers a, b such that

$$
n=a^{2} b
$$

and b is square-free. (The number b is called the square-free part of n.)
Problem 6. The purpose of this problem is to provide a different proof of Bézout's lemma, based on a theorem on the structure of subgroups of \mathbb{Z}. The definition of "subgroup of \mathbb{Z} " is given above. The theorem that completely determines the structure of all subgroups of \mathbb{Z} is Fact 9 below. Bézout's lemma is Fact 10 below.

If a is an arbitrary integer, we define a subset $[a]$ of \mathbb{Z} as follows:

$$
[a]=\{n \in \mathbb{Z}:(\exists u \in \mathbb{Z}) n=u a\}
$$

In other words, $[a]$ is the set of all integers that are multiples of a.
If a, b are arbitrary integers, we define a subset $[a, b]$ of \mathbb{Z} as follows:

$$
[a, b]=\{n \in \mathbb{Z}:(\exists u \in \mathbb{Z})(\exists v \in \mathbb{Z}) n=u a+v b\}
$$

In other words, $[a, b]$ is the set of all integers that are the sum of a multiple of a and a multiple of b. Equivalently, $[a, b]$ is the set of all integers that are integer linear combinations of a and b.
Prove the following facts:

1. If S is a subgroup of \mathbb{Z}, then $0 \in S$.
2. If S is a subgroup of \mathbb{Z}, then S is closed under the "minus" operation, that is: if a is an arbitrary member of S, it follows that $-a \in S$.
3. If S is a subgroup of \mathbb{Z}, then S is closed under addition, that is: if a, b are arbitrary members of S, it follows that $a+b \in S$.
4. If S is a subgroup of \mathbb{Z}, and $a \in S$, then $[a] \subseteq S$. That is, every multiple ua of a member a of S is in S. (HINT: First prove by induction on n, using Fact 3 , that if $n \in \mathbb{N}$ and $a \in S$ then $n a \in S$. Then, using this, and Facts 1 and 2, prove that $u a \in S$ also if $u=0$ or $u<0$.)
5. If a is an integer, then $[a]$ is a subgroup of \mathbb{Z}.
6. If a, b are integers, then $[a, b]$ is a subgroup of \mathbb{Z}.
7. If a, b are integers, then $[a] \subseteq[b]$ if and only if $b \mid a$.
8. If S and T are subgroups, then $S \cap T$ is a subgroup. (WARNING: The first thing you will have to prove is that $S \cap T \neq \emptyset$. You know that S and T are nonempty, because they are subgroups. But it is not true that the intersection of two nonempty sets is nonempty. So you cannot prove that $S \cap T \neq \emptyset$ by saying " S is nonempty, and T is nonempty, so $S \cap T$ is nonempty". You need a more sophisticated argument.
9. If S is a subgroup of \mathbb{Z}, then
(i) there exists a unique nonnegative integer u such that $S=[u]$.
(ii) if $S \neq\{0\}$, then the unique nonnegative integer u such that $S=$ [u] satisfies:
(a) $u \in \mathbb{N}$,
(b) u is the smallest member of $S \cap \mathbb{N}$.
(HINT: Observe that either $S=\{0\}$ or $S \neq\{0\}$, and that if $S=\{0\}$ then $S=[0]$. Prove that if $S \neq\{0\}$ then $S \cap \mathbb{N} \neq \emptyset$. Use the WOP to conclude that $S \cap \mathbb{N}$ has a smallest member. Call this smallest member u, so $u \in \mathbb{N}$. Then prove that $S=[u]$ as follows: the inclusion $[u] \subseteq S$ follows from Fact 4; the inclusion $S \subseteq[u]$ follows from the Division Theorem: let $n \in S$; then write $n=q u+r$ with $0 \leq r<u$; then $r \in S$, because $r=n-q s$; then r must be 0 because if $r>0$ then $r \in S \cap \mathbb{N}$
and $r<u$, contradicting the fact that u is rhe smallest member of $S \cap \mathbb{N}$; so $n=q s$ and then $n \in[u]$.)
10. If a, b are integers, and $a \neq 0$ or $b \neq 0$, then the smallest member of $[a, b] \cap \mathbb{N}$ is the greatest common divisor of a and b. (HINT: We know from Fact 6 that $[a, b]$ is a subgroup of \mathbb{Z}, and then Fact 9 tells us that $[a, b]=[g]$ for some $g \in \mathbb{N}$. Show that $a \in[a, b]$ and $b \in[a, b]$, and conclude from this that $g \mid a$ and $g \mid b$. Finally, show that if c is any common factor of a and b then $c \leq g$ as follows: show that every member of $[a, b]$ is a multiple of c; conclude that $[a, b] \subseteq[c]$; infer from this that $g \in[c]$; then g is a multiple of c; deduce from this that $c \leq g$.)
