MATHEMATICS 300 — FALL 2018
 Introduction to Mathematical Reasoning
 H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 4, DUE ON TUESDAY, OCTOBER 9

Problem 1. Book, Page 81, problems 5, 6, 9(b), 10.

Problem 2.

1. Prove that if n is an integer then there exist unique integers q, r such that $n^{2}=4 q+r$ and $r=0 \vee r=1$. (Hint: use the division theorem, i.e., the theorem that the book calls the "division algorithm".)
2. Prove that if m, n are integers then there exist unique integers q, r such that $m^{2}+n^{2}=4 q+r$ and $r=0 \vee r=1 \vee r=2$.
3. Prove that if m, n are integers then there exist unique integers q, r such that $m^{2}-n^{2}=4 q+r$ and $r=0 \vee r=1 \vee r=3$.
4. Prove that if a is an integer such that $a=4 k+3$ for some integer k then a cannot be written as the sum of two squares. (In formal language: $\left.(\forall a \in \mathbb{Z})\left((\exists k \in \mathbb{Z}) a=4 k+3 \Longrightarrow \sim(\exists m \in \mathbb{Z})(\exists n \in \mathbb{Z}) m^{2}+n^{2}=a\right).\right)$
5. Prove that if a is an integer such that $a=4 k+2$ for some integer k (that is, a is even but not divisible by 4) then a cannot be written as the difference of two squares. (In formal language:
$\left.(\forall a \in \mathbb{Z})\left((\exists k \in \mathbb{Z}) a=4 k+2 \Longrightarrow \sim(\exists m \in \mathbb{Z})(\exists n \in \mathbb{Z}) m^{2}-n^{2}=a\right).\right)$
6. Prove that if a is an integer such that a is not of equal to $4 k+2$ for any integer k (that is, if the remainder of dividing a by 4 is 0 or 1 or 3 or, equivalently, if a is either odd or divisible by 4) then a can be written as the difference of two squares. (In formal language: $(\forall a \in \mathbb{Z})((\exists k \in \mathbb{Z})(a=$ $\left.\left.4 k \vee a=4 k+1 \vee a=4 k+3) \Longrightarrow(\exists m \in \mathbb{Z})(\exists n \in \mathbb{Z}) m^{2}-n^{2}=a\right).\right)$ HINT: Show that we can pick integers r, s such that $r-s$ is even $a=r s$, and $r \leq s$. (If a is odd just take $r=1$ and $s=a$. If a is even take $r=2$.) Then solve the equations $m-n=r, m+n=s$. Make sure you explain why this yields integers m, n such that $m^{2}-n^{2}=a$. In particular, explain what goes wrong with this method for finding m, n in the "bad" case, when $a=4 k+2$ for some integer k.
