MATHEMATICS 300 — FALL 2018

Introduction to Mathematical Reasoning

H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 5, DUE ON THURSDAY, OCTOBER 25 (FOR SECTION 5) AND FRIDAY, OCTOBER 26 (FOR SECTION 3)

This assignment consists of just one problem.

Problem. This problem proposes a different proof and a generalization of the theorem that says that the greatest common divisor of two integers a, b is the smallest positive integer linear combination of a and b.

Definition 1. If $n \in \mathbb{N}$, and a_1, a_2, \ldots, a_n are integers, an integer g is a greatest common divisor (GDC) of a_1, a_2, \ldots, a_n if

- 1. g divides all the a_j s (that is: $(\forall j \in \mathbb{N})(j \leq n \Longrightarrow g|a_j)$).
- 2. if c is any integer such that c divides all the a_j s, then $c \leq g$. (That is: $(\forall c \in \mathbb{Z}) \Big((\forall j \in \mathbb{N}) (j \leq n \Longrightarrow c | a_j) \Longrightarrow c \leq g \Big)$.)

Definition 2. If $n \in \mathbb{N}$, and a_1, a_2, \ldots, a_n are integers, an integer c is an integer linear combination (ILC) of a_1, a_2, \ldots, a_n if

(*) there exist integers k_1, k_2, \ldots, k_n such that

$$c = k_1 a_1 + k_2 a_2 + \dots + k_n a_n.$$

- 1. **Prove** that, if $n \in \mathbb{N}$, and a_1, a_2, \ldots, a_n are integers, then
 - (a) If a GCD of a_1, a_2, \ldots, a_n exists, then it is unique. (In view of this, from now on we are entitled to talk about **the** greatest common divisor of a_1, a_2, \ldots, a_n .)
 - (b) If c is a common divisor of the a_j (that is, if $c|a_j$ for $j=1,2,\ldots,n$) and b is an integer linear combination of a_1,a_2,\ldots,a_n , then c divides b.

- (c) If b is an integer linear combination of a_1, a_2, \ldots, a_n , b is positive (that is, b > 0), and b is not a common divisor of the a_j , then there exists an integer b' such that 0 < b' < b and b' is an integer linear combination of a_1, a_2, \ldots, a_n . (HINT: Pick j such that b does not divide a_j , and use the division theorem to write $a_j = bq + b'$ with $q, b' \in \mathbb{Z}$ and 0 < b' < b.)
- (d) If all the a_j are equal to zero (that is, if $(\forall j \in \mathbb{N}) (j \leq n \Longrightarrow a_j = 0)$), then a GCD of a_1, a_2, \ldots, a_n in the sense of Definition 1 does not exist.
- (e) If a_1, a_2, \ldots, a_n are not all equal to zero (that is, if $(\exists j \in \mathbb{N})(j \le n \land a_j \ne 0)$, and S is the set of all positive integers that are ILCs of a_1, a_2, \ldots, a_n , then
 - i. S is nonempty,
 - ii. the smallest member of S (which exists, because of the Well Ordering Principle) is a GCD of a_1, a_2, \ldots, a_n .
- 2. **Conclude** from the above that
 - (#) If $n \in \mathbb{N}$, and a_1, a_2, \ldots, a_n are integers, then
 - (a) A GCD of a_1, a_2, \ldots, a_n exists if and only if the a_j are not all equal to zero.
 - (b) If the a_j are not all equal to zero. then the GCD of a_1, a_2, \ldots, a_n is the smallest of all positive integers that are integer linear combinations of a_1, a_2, \ldots, a_n .
- 3. For n = 3, $a_1 = 21$, $a_2 = 60$, $a_3 = 35$, **find** the GCD of a_1, a_2, a_3 , and **express** it as an ILC of a_1, a_2, a_3 .