HOMEWORK ASSIGNMENT NO. 5, DUE ON THURSDAY, OCTOBER 25 (FOR SECTION 5)
 AND FRIDAY, OCTOBER 26 (FOR SECTION 3)

This assignment consists of just one problem.

Problem. This problem proposes a different proof and a generalization of the theorem that says that the greatest common divisor of two integers a, b is the smallest positive integer linear combination of a and b.
Definition 1. If $n \in \mathbb{N}$, and $a_{1}, a_{2}, \ldots, a_{n}$ are integers, an integer g is a greatest common divisor (GDC) of $a_{1}, a_{2}, \ldots, a_{n}$ if

1. g divides all the $a_{j S}$ (that is: $\left.(\forall j \in \mathbb{N})\left(j \leq n \Longrightarrow g \mid a_{j}\right)\right)$.
2. if c is any integer such that c divides all the a_{j} s, then $c \leq g$. (That is:

$$
\left.(\forall c \in \mathbb{Z})\left((\forall j \in \mathbb{N})\left(j \leq n \Longrightarrow c \mid a_{j}\right) \Longrightarrow c \leq g\right) .\right)
$$

Definition 2. If $n \in \mathbb{N}$, and $a_{1}, a_{2}, \ldots, a_{n}$ are integers, an integer c is an integer linear combination (ILC) of $a_{1}, a_{2}, \ldots, a_{n}$ if
$\left.{ }^{*}\right)$ there exist integers $k_{1}, k_{2}, \ldots, k_{n}$ such that

$$
c=k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{n} a_{n} .
$$

1. Prove that, if $n \in \mathbb{N}$, and $a_{1}, a_{2}, \ldots, a_{n}$ are integers, then
(a) If a GCD of $a_{1}, a_{2}, \ldots, a_{n}$ exists, then it is unique. (In view of this, from now on we are entitled to talk about the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{n}$.)
(b) If c is a common divisor of the a_{j} (that is, if $c \mid a_{j}$ for $j=1,2, \ldots, n$) and b is an integer linear combination of $a_{1}, a_{2}, \ldots, a_{n}$, then c divides b.
(c) If b is an integer linear combination of $a_{1}, a_{2}, \ldots, a_{n}, b$ is positive (that is, $b>0$), and b is not a common divisor of the a_{j}, then there exists an integer b^{\prime} such that $0<b^{\prime}<b$ and b^{\prime} is an integer linear combination of $a_{1}, a_{2}, \ldots, a_{n}$. (HINT: Pick j such that b does not divide a_{j}, and use the division theorem to write $a_{j}=b q+b^{\prime}$ with $q, b^{\prime} \in \mathbb{Z}$ and $0<b^{\prime}<b$.)
(d) If all the a_{j} are equal to zero (that is, if $\left.(\forall j \in \mathbb{N})\left(j \leq n \Longrightarrow a_{j}=0\right)\right)$, then a GCD of $a_{1}, a_{2}, \ldots, a_{n}$ in the sense of Definition 1 does not exist.
(e) If $a_{1}, a_{2}, \ldots, a_{n}$ are not all equal to zero (that is, if $(\exists j \in \mathbb{N})(j \leq$ $n \wedge a_{j} \neq 0$), and S is the set of all positive integers that are ILCs of $a_{1}, a_{2}, \ldots, a_{n}$, then
i. S is nonempty,
ii. the smallest member of S (which exists, because of the Well Ordering Principle) is a GCD of $a_{1}, a_{2}, \ldots, a_{n}$.
2. Conclude from the above that
(\#) If $n \in \mathbb{N}$, and $a_{1}, a_{2}, \ldots, a_{n}$ are integers, then
(a) A GCD of $a_{1}, a_{2}, \ldots, a_{n}$ exists if and only if the a_{j} are not all equal to zero.
(b) If the a_{j} are not all equal to zero. then the GCD of $a_{1}, a_{2}, \ldots, a_{n}$ is the smallest of all positive integers that are integer linear combinations of $a_{1}, a_{2}, \ldots, a_{n}$.
3. For $n=3, a_{1}=21, a_{2}=60, a_{3}=35$, find the GCD of a_{1}, a_{2}, a_{3}, and express it as an ILC of a_{1}, a_{2}, a_{3}.
