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HOMEWORK ASSIGNMENT NO. 5, DUE ON
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This assignment consists of just one problem.

Problem. This problem proposes a different proof and a generalization of
the theorem that says that the greatest common divisor of two integers a, b
is the smallest positive integer linear combination of a and b.

Definition 1. If n ∈ IN, and a1, a2, . . . , an are integers, an integer g is a
greatest common divisor (GDC) of a1, a2, . . . , an if

1. g divides all the ajs (that is: (∀j ∈ IN)(j ≤ n =⇒ g|aj)).

2. if c is any integer such that c divides all the ajs, then c ≤ g. (That is:

(∀c ∈ Z)
(

(∀j ∈ IN)(j ≤ n =⇒ c|aj) =⇒ c ≤ g
)

.)

Definition 2. If n ∈ IN, and a1, a2, . . . , an are integers, an integer c is an
integer linear combination (ILC) of a1, a2, . . . , an if

(*) there exist integers k1, k2, . . . , kn such that

c = k1a1 + k2a2 + · · ·+ knan .

1. Prove that, if n ∈ IN, and a1, a2, . . . , an are integers, then

(a) If a GCD of a1, a2, . . . , an exists, then it is unique. (In view of this,
from now on we are entitled to talk about the greatest common
divisor of a1, a2, . . . , an.)

(b) If c is a common divisor of the aj (that is, if c|aj for j = 1, 2, . . . , n)
and b is an integer linear combination of a1, a2, . . . , an, then c
divides b.



(c) If b is an integer linear combination of a1, a2, . . . , an, b is positive
(that is, b > 0), and b is not a common divisor of the aj, then there
exists an integer b′ such that 0 < b′ < b and b′ is an integer linear
combination of a1, a2, . . . , an. (HINT: Pick j such that b does not
divide aj, and use the division theorem to write aj = bq + b′ with
q, b′ ∈ Z and 0 < b′ < b.)

(d) If all the aj are equal to zero (that is, if (∀j∈ IN)(j≤n=⇒aj =0)),
then a GCD of a1, a2, . . . , an in the sense of Definition 1 does not
exist.

(e) If a1, a2, . . . , an are not all equal to zero (that is, if (∃j ∈ IN)(j ≤
n ∧ aj 6= 0), and S is the set of all positive integers that are ILCs
of a1, a2, . . . , an, then

i. S is nonempty,

ii. the smallest member of S (which exists, because of the Well
Ordering Principle) is a GCD of a1, a2, . . . , an.

2. Conclude from the above that

(#) If n ∈ IN, and a1, a2, . . . , an are integers, then

(a) A GCD of a1, a2, . . . , an exists if and only if the aj are not all
equal to zero.

(b) If the aj are not all equal to zero. then the GCD of a1, a2, . . . , an
is the smallest of all positive integers that are integer linear
combinations of a1, a2, . . . , an.

3. For n = 3, a1 = 21, a2 = 60, a3 = 35, find the GCD of a1, a2, a3, and
express it as an ILC of a1, a2, a3.


